分析 (1)依題意得:$\frac{{C_{n-1}^4}}{C_n^4}=\frac{3}{5}$,由此能求出n的值.
(2)記事件A為:兩天通過檢查,事件A1為第一天通過檢查,事件A2為第二天通過檢查,A=A1A2,由此利用相互獨立事件概率乘法公式能求出兩天都通過檢查的概率.
(3)利用對立事件概率計算公式能求出兩天中至少有一天通過檢查的概率.
解答 解:(1)依題意得:$\frac{{C_{n-1}^4}}{C_n^4}=\frac{3}{5}$,
解得n=10.
(2)記事件A為:兩天通過檢查,事件A1為第一天通過檢查,事件A2為第二天通過檢查,
第二天通過檢查的概率$P({A_2})=\frac{C_8^4}{{C_{10}^4}}=\frac{1}{3}$,
記事件A為:兩天通過檢查,事件A1為第一天通過檢查,事件A2為第二天通過檢查,
∴兩天都通過檢查的概率$P(A)=P({A_1})P({A_2})=\frac{3}{5}×\frac{1}{3}=\frac{1}{5}$.
(3)兩天中至少有一天通過檢查的概率為:
$1-(1-\frac{3}{5})(1-\frac{1}{3})=1-\frac{2}{5}×\frac{2}{3}=1-\frac{4}{15}=\frac{11}{15}$.
點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意相互獨立事件概率乘法公式、對立事件概率計算公的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{x}{2}$-$\frac{3y}{4}$=1 | B. | $\frac{x}{2}$+$\frac{3y}{-4}$=1 | C. | $\frac{x}{2}$-$\frac{y}{{\frac{4}{3}}}$=1 | D. | $\frac{x}{2}$+$\frac{y}{{-\frac{4}{3}}}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com