20.已知向量$\overrightarrow a$=(2cosθ,2sinθ),$\overrightarrow b$=(3,$\sqrt{3}$),且$\overrightarrow a$與$\overrightarrow b$共線,θ∈[0,2π),則θ=( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{7π}{6}$

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$與$\overrightarrow$共線,∴6sinθ-2$\sqrt{3}$cosθ=0,
∴tanθ=$\frac{\sqrt{3}}{3}$,
∵θ∈[0,2π),
∴θ=$\frac{π}{6}$或$\frac{7π}{6}$π.
故選:D.

點(diǎn)評(píng) 本題考查了向量共線定理,三角函數(shù)求值問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=cos(x+15°),則f(30°)=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解方程:log${\;}_{\frac{1}{2}}$(9x-1-5)=log${\;}_{\frac{1}{2}}$(3x-1-2)-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若△ABC外接圓的半徑為5,則$\frac{AB}{sinC}$=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.棱長(zhǎng)為a正方體ABCD-A1B1C1D1中,M,N分別是棱A1B1,B1C1的中點(diǎn),點(diǎn)P是棱AB上一點(diǎn),且AP=$\frac{a}{3}$,過點(diǎn)P,M,N的平面與直線CD交于一點(diǎn)Q,則PQ的長(zhǎng)為$\sqrt{2}a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)f(x)=3cos($\frac{π}{2}$x)與g(x)=x-1的所有交點(diǎn)從左往右依次記為A1,A2,A3,…,An,若O為坐標(biāo)原點(diǎn),則|$\overrightarrow{O{A}_{1}}$+$\overrightarrow{O{A}_{2}}$+…+$\overrightarrow{O{A}_{n}}$|=(  )
A.0B.1C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)是(4,0),O為坐標(biāo)原點(diǎn),若橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}滿足a1=5,an+1=2an+3,則a3=29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知α,β∈(0,$\frac{π}{2}$),sin(α-$\frac{π}{4}$)=$\frac{3}{5}$,tanβ=$\frac{1}{2}$.
(1)求sinα的值;
(2)求tan(α+2β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案