14.求下列函數(shù)的定義域:
(1)y=$\frac{x-7}{x+3}$;
(2)y=$\sqrt{2x+1}$;
(3)y=$\sqrt{5x-3}+\frac{{{x^2}-1}}{x-6}$.

分析 (1)由分式的分母不為0求得x的范圍得答案;
(2)由根式內(nèi)部的代數(shù)式大于等于0求得x的范圍得答案;
(2)由分式的分母不為0且根式內(nèi)部的代數(shù)式大于等于0求得x的范圍得答案.

解答 解:(1)由x+3≠0,得x≠3,
∴函數(shù)y=$\frac{x-7}{x+3}$的定義域為(-∞,3)∪(3,+∞);
(2)由2x+1≥0,得x$≥-\frac{1}{2}$,
∴函數(shù)y=$\sqrt{2x+1}$的定義域為[$-\frac{1}{2}$,+∞);
(3)由$\left\{\begin{array}{l}{5x-3≥0}\\{x-6≠0}\end{array}\right.$,解得x$≥\frac{3}{5}$且x≠6,
∴函數(shù)y=$\sqrt{5x-3}+\frac{{{x^2}-1}}{x-6}$的定義域為[$\frac{3}{5}$,6)∪(6,+∞).

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點M為橢圓上位于第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與軸交于點D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以直角坐標系xOy的原點為極點,x軸的正半軸為極軸建立極坐標系,兩坐標系中的單位長度相同.已知點A的極坐標為(${\sqrt{2}$,$\frac{π}{4}}$),曲線C在直角坐標系下參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cost\\ y=\sqrt{2}sint\end{array}$(t為參數(shù)),曲線C在點A處的切線為l.
(1)求切線l的極坐標方程;
(2)已知點P直角坐標為(-$\frac{1}{4}$,$\frac{{\sqrt{3}}}{4}$),過點P任作一直線交曲線C于A,B兩點,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足f'(x)<f(x),且f(x+2)=f(-x+2),f(4)=1,則不等式f(x)<ex的解集為(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在空間中,下列命題錯誤的是(  )
A.過直線外一點有且只有一條直線與已知直線平行
B.不公線的三個點確定一個平面
C.如果兩條直線垂直于同一條直線,那么這兩條直線平行
D.如果兩個平面垂直于同一個平面,那么這兩個平面可能互相垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=log3(a+x)+log3(2-x)(a∈R)是偶函數(shù).
(1)若f(p)=1,求實數(shù)p的值;
(2)若存在m使得f(2m-1)<f(m)成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,已知三棱錐S-ABC中,SA=SB=CA=CB=$\sqrt{3}$,AB=2,SC=$\sqrt{2}$,則二面角S-AB-C的平面角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,O為AC與BD的交點,AB⊥平面PAD,△PAD是正三角形,DC∥AB,DA=DC=2AB=2a.
(1)若點E為棱PA上一點,且OE∥平面PBC,求$\frac{AE}{PE}$的值;
(2)求證:平面PBC⊥平面PDC;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{6}}}{3}$,短軸一個端點到右焦點的距離為$\sqrt{3}$,
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線$y=kx+\sqrt{2}$與橢圓C交于A,B兩點,且$\overrightarrow{OA}•\overrightarrow{OB}=1$,求k的值.

查看答案和解析>>

同步練習(xí)冊答案