如圖,已知四棱錐中,底面是直角梯形,,,平面,. 

(1)求證:平面
(2)求證:平面;
(3)若M是PC的中點,求三棱錐M—ACD的體積.
(1)證明:,且平面
平面.   …………………………………………………3分
(2)證明:在直角梯形中,過于點,則四邊形為矩形
,又,∴,在Rt△中,
,  ……………………………………………………4分
,則,
   ……………………………………………………………………6分
 ∴   ………………………………………7分
                                                                               
平面  ………………………………………………………………9分
(3)∵中點,
到面的距離是到面距離的一半.  ………………………11分
.………………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在多面體中,已知平面是邊長為的正方形,,,且與平面的距離為,則該多面體的體積為(    )
A.B.C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若a,b是異面直線,直線c∥a,則c與b的位置關系是 
A.相交B.異面C.平行D.異面或相交

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線上的一個點在平面α內,另一個點在平面α外,則直線與平面α的位置關系是(   )
A.αB.αC.∥αD.以上都不正確

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,已知所在的平面,分別為的中點,
(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分14分)
在三棱錐中,是邊長為的正三角形,平面⊥平面,、分別為的中點。
(1)證明:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)  
如圖,直三棱柱的底面位于平行四邊形中,,,,點中點.    
  
(1)求證:平面平面.
(2)設二面角的大小為,直線與平面所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD的底面ABCD是邊長為1的菱形,∠BCD﹦60°,E是CD中點,
PA⊥底面ABCD,PA=    
             
(1)證明:平面PBE⊥平面PAB
(2)求二面角A—BE—P的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PA垂直于底面,E、F分別是AB、PC的中點。 

⑴求證:CD⊥PD;  
⑵求證:EF∥平面PAD;
⑶若直線EF⊥平面PCD,求平面PCD與平面ABCD所成二面角的大小

查看答案和解析>>

同步練習冊答案