函數(shù)y=
25-5x
的值域是( 。
A、[0,+∞)
B、[0,5]
C、[0,5)
D、(0,5)
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)y=
25-5x
的解析式得0<5x≤25,所以-25≤-5x<0,0≤25-5x<25,0≤
25-5x
<5
,這樣便求出了函數(shù)y的值域:[0,5).
解答: 解:解25-5x≥0得:x≤2;
∴0<5x≤52=25,
∴-25≤-5x<0,0≤25-5x<25;
0≤
25-5x
<5
;
∴函數(shù)y的值域是[0,5).
故選C.
點(diǎn)評(píng):考查函數(shù)值域的概念,指數(shù)函數(shù)的值域,被開(kāi)方數(shù)滿足大于等于0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=20.5,b=logπ3,c=log
1
2
e,則( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
ex+1
,g(x)=-x2+4x-3,對(duì)于任意的a,存在b使方程f(a)=g(b)成立,則b的取值范圍是(  )
A、(1,3)
B、(1,2)∪(2,3)
C、[1,3]
D、[1,2)∪(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)大于或等于2的自然數(shù)m的n次冪有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.根據(jù)上述分解規(guī)律,則52=1+3+5+7+9.若m3(m∈N+)的分解中最小的數(shù)是73,則m的值為(  )
A、6B、8C、9D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=2sin(ωx+φ)的部分圖象如圖所示,則ω和φ的取值是( 。
A、ω=
1
2
,φ=-
π
6
B、ω=
1
2
,φ=
π
6
C、ω=1,φ=-
π
3
D、ω=1,φ=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)系中正確的個(gè)數(shù)為(  )
①0∈{0},②Φ
 
?
{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}共有2n+1項(xiàng),其中奇數(shù)項(xiàng)通項(xiàng)公式為an=2n-1,則數(shù)列{an}的奇數(shù)項(xiàng)的和為(  )
A、2(2n+1-1)-n-1
B、
2
3
(4n+1-1)-n-1
C、2(4n+1-1)-n-1
D、
2
3
(2n+1-1)-n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t
y=t+4
(t為參數(shù)).曲線C的參數(shù)方程為
x=2+2
2
cosθ
y=2+2
2
sinθ
(θ為參數(shù)),則直線l和曲線C的公共點(diǎn)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
1+|x|
(x∈R)時(shí),則下列結(jié)論不正確的是(  )
A、任意x∈R,等式f(-x)+f(x)=0恒成立
B、存在m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根
C、對(duì)任意x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D、存在k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案