【題目】在三棱柱中,,,為的中點(diǎn).
(1)證明:;
(2)若,點(diǎn)在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.
【答案】(1)詳見(jiàn)解析;(2)高為
【解析】
(1)連結(jié)交于點(diǎn)E,連結(jié)DE,,得面;
(2)取的中點(diǎn)O,連結(jié),因?yàn)辄c(diǎn)在面ABC上的攝影在AC上,且,所以面ABC,則可建立如圖的空間直角坐標(biāo)系,設(shè),求出平面的法向量,由BC與平面所成角的正弦值為,即,可求得.
(1)連結(jié)交于點(diǎn)E,連結(jié)DE,則E是的中點(diǎn),
又D為的中點(diǎn),所以,且面,面,
所以面;
(2)取的中點(diǎn)O,連結(jié),
因?yàn)辄c(diǎn)在面ABC上的攝影在AC上,且,
所以面ABC,可建立如圖的空間直角坐標(biāo)系,設(shè),
因?yàn)?/span>,
則,
,
設(shè)為面的法向量,
,取,則,
由BC與平面所成角的正弦值為,即
,解得,
所以三棱柱的高是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知底面ABCD是邊長(zhǎng)為1的正方形,側(cè)面PAD⊥平面ABCD,PA=PD,PA與平面PBC所成角的正弦值為。
(1)求側(cè)棱PA的長(zhǎng);
(2)設(shè)E為AB中點(diǎn),若PA≥AB,求二面角B-PC-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線x=﹣2上有一動(dòng)點(diǎn)Q,過(guò)點(diǎn)Q作直線l,垂直于y軸,動(dòng)點(diǎn)P在l1上,且滿足(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.
(1)求曲線C的方程;
(2)已知定點(diǎn)M(,0),N(,0),點(diǎn)A為曲線C上一點(diǎn),直線AM交曲線C于另一點(diǎn)B,且點(diǎn)A在線段MB上,直線AN交曲線C于另一點(diǎn)D,求△MBD的內(nèi)切圓半徑r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某火鍋店為了解氣溫對(duì)營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營(yíng)業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求y關(guān)于x的回歸方程;
(2)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額;
附:①;.
②參考數(shù)據(jù)如下:
i | ||||
1 | 2 | 12 | 4 | 24 |
2 | 5 | 10 | 25 | 50 |
3 | 8 | 8 | 64 | 64 |
4 | 9 | 8 | 81 | 72 |
5 | 11 | 7 | 121 | 77 |
35 | 45 | 295 | 287 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求l的普通方程和C的直角坐標(biāo)方程;
(2)若l與C相交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
3 | 2 | 4 | ||
0 | 4 |
(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請(qǐng)問(wèn)是否存在直線滿足條件:①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)且滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)當(dāng)有兩個(gè)極值點(diǎn)時(shí),求a的取值范圍,并證明的極大值大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;
②用來(lái)刻畫(huà)回歸效果,越大,說(shuō)明模型的擬合效果越好;
③根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算得出的的值越大,兩類(lèi)變量相關(guān)的可能性就越大;
④在回歸分析模型中,殘差平方和越小,說(shuō)明模型的擬合效果越好;
⑤從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣.
其中真命題的序號(hào)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com