已知橢圓的中心在坐標原點,焦點在x軸上,以其兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為4的正方形,設(shè)P為該橢圓上的動點,C、D的坐標分別是(-
2
,0),(
2
,0),則PC•PD的最大值為( 。
A、4
B、2
2
C、3
D、2
2
+2
分析:利用正方形的面積求出橢圓的焦距、長軸長;利用橢圓的大定義求出P到兩焦點的距離,代入PC•PD轉(zhuǎn)化成二次函數(shù)最值,利用二次函數(shù)求出最值.
解答:解:設(shè)左右焦點為F1、F2,上頂點為A,正方形邊長=2,
∴|AF1|=|AF2|=2,|F1F2|=2
2

c=
2
,
則C、D是橢圓的左右焦點,C是F1,D是F2
根據(jù)橢圓定義,|AF1|+|AF2|=2+2=4=2a,
a是長半軸長,
a=2,
|PF1|+|PF2|=2a=4,
|PF1|•|PF2|=|PF1|•(4-|PF1|),
設(shè)|PF1|=x,
|PC|•|PD|=x(4-x)=-x2+4x═-(x-2)2+4
當x=2時.其乘積最大值為4.
當P在短軸頂點時,最大.
點評:本題考查橢圓的定義、等價轉(zhuǎn)化的能力、二次函數(shù)最值的求法,考查運算能力,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓的中心在坐標原點O,焦點在x軸上,短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.過右焦點F與x軸不垂直的直線l交橢圓于P,Q兩點.
(1)求橢圓的方程;
(2)當直線l的斜率為1時,求△POQ的面積;
(3)在線段OF上是否存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標原點,且經(jīng)過點M(1,
2
5
5
)
,N(-2,
5
5
)
,若圓C的圓心與橢圓的右焦點重合,圓的半徑恰好等于橢圓的短半軸長,已知點A(x,y)為圓C上的一點.
(1)求橢圓的標準方程和圓的標準方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O為坐標原點)的取值范圍;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標原點,焦點在x軸上,橢圓上點P(3
2
,4)
到兩焦點的距離之和是12,則橢圓的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標原點,焦點在x軸上,焦距為6
3
,且橢圓上一點到兩個焦點的距離之和為12,則橢圓的方程為
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標原點O,焦點在x軸上,離心率為
2
2
,坐標原點O到過右焦點F且斜率為1的直線的距離為
2
2

(1)求橢圓的方程;
(2)設(shè)過右焦點F且與坐標軸不垂直的直線l交橢圓于P、Q兩點,在線段OF上是否存在點M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案