1.已知f(x)=x2-2,x∈(-5,5],則f(x)是(  )
A.奇函數(shù)B.偶函數(shù)
C.即是奇函數(shù)又是偶函數(shù)D.非奇非偶

分析 f(x)=x2-2,x∈(-5,5],定義域不關(guān)于原點對稱,即可得出結(jié)論.

解答 解:∵f(x)=x2-2,x∈(-5,5],定義域不關(guān)于原點對稱,
∴f(x)是非奇非偶函數(shù).
故選D.

點評 本題考查函數(shù)的奇偶性,考查學(xué)生對定義的理解,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an},各項an>0,公比為q.
(1)設(shè)bn=logcan(c>0,c≠1),求證:數(shù)列{bn}是等差數(shù)列,并求出該數(shù)列的首項b1及公差d;
(2)設(shè)(1)中的數(shù)列{bn}單調(diào)遞減,求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在四棱錐P-ABCD中,$\overrightarrow{AB}$=(4,-2,3),$\overrightarrow{AD}$=(-4,1,0),$\overrightarrow{AP}$(-6,2,-8),則該四棱錐的高為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=($\frac{1}{{{2^x}-1}}$+a)x,a∈R
(1)求函數(shù)的定義域
(2)是否存在實數(shù)a,使得f(x)為偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c且面積為S,滿足S=$\frac{\sqrt{7}}{6}$bccosA
(1)求cosA的值;
(2)若a+c=10,C=2A,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-ax-1,x∈[-5,5]
(1)當(dāng)a=2,求函數(shù)f(x)的最大值和最小值;
(2)若函數(shù)f(x)在定義域內(nèi)是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=lg(x2-9)的單調(diào)增區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-5≤0}\\{2x-y-1≥0}\\{x-2y+1≤0}\end{array}\right.$,則z=3x+y的最大值為(  )
A.8B.9C.4D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},\;\;x≤1\\-{x^2}+2x+1,\;\;x>1\end{array}$的值域是(-∞,2].

查看答案和解析>>

同步練習(xí)冊答案