【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對角線AC,且平面截得正方體的六個表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
【答案】B
【解析】
將正方體切去兩個正三棱錐和,得到一個幾何體,是以平行平面和為上下底,每個側(cè)面都是直角等腰三角形,截面多邊形的每一條邊分別與的底面上的一條邊平行,設(shè)正方體棱長為,,可求得六邊形的周長為與無關(guān),即周長為定值;當都在對應(yīng)棱的中點時,是正六邊形,計算可得面積,當無限趨近于時,的面積無限趨近于,從而可知的面積一定會發(fā)生變化。
設(shè)平面截得正方體的六個表面得到截面六邊形為,與正方體的棱的交點分別為(如下圖),
將正方體切去兩個正三棱錐和,得到一個幾何體,是以平行平面和為上下底,每個側(cè)面都是直角等腰三角形,截面多邊形的每一條邊分別與的底面上的一條邊平行,設(shè)正方體棱長為,,則,,故,同理可證明,故六邊形的周長為,即周長為定值;
當都在對應(yīng)棱的中點時,是正六邊形,計算可得面積,三角形的面積為,當無限趨近于時,的面積無限趨近于,故的面積一定會發(fā)生變化,不為定值。
故答案為B.
科目:高中數(shù)學 來源: 題型:
【題目】(1)設(shè)是給定實數(shù),解關(guān)于的不等式 ;
(2)設(shè)是一個給定實數(shù),試求出1中的取值范圍,使得不等式能滿足1中的式子。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與直線相切且與圓外切。
(1)求圓心的軌跡的方程;
(2)設(shè)第一象限內(nèi)的點在軌跡上,若軸上兩點,,滿足且. 延長、分別交軌跡于、兩點,若直線的斜率,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】,.
(1)若在是增函數(shù),求實數(shù)a的范圍;
(2)若在上最小值為3,求實數(shù)a的值;
(3)若在時恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為探索課堂教學改革,惠來縣某中學數(shù)學老師用傳統(tǒng)教學和“導(dǎo)學案”兩種教學方式,在甲、乙兩個平行班進行教學實驗.為了解教學效果,期末考試后,分別從兩個班級各隨機抽取20名學生的成績進行統(tǒng)計,得到如下莖葉圖.記成績不低于70分者為“成績優(yōu)良”.
(Ⅰ)分析甲、乙兩班的樣本成績,大致判斷哪種教學方式的教學效果更佳,并說明理由;
(Ⅱ)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績是否優(yōu)良與教學方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
參考公式:,其中是樣本容量.
獨立性檢驗臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點A(-1,0),F(2,0),定直線l:x=,不在x軸上的動點P與點F的距離是它到直線l的距離的2倍.設(shè)點P的軌跡為E,過點F的直線交E于B、C兩點,直線AB、AC分別交l于點M、N
(Ⅰ)求E的方程;
(Ⅱ)試判斷以線段MN為直徑的圓是否過點F,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分數(shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關(guān)?
文科生 | 理科生 | 合計 | |
獲獎 | 6 | ||
不獲獎 | |||
合計 | 400 |
(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數(shù)為,求的分布列及數(shù)學期望.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列滿足,前8項和.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足.
① 證明:為等比數(shù)列;
② 求集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com