13.已知直線方程為cos300°x+sin300°y=3,則直線的傾斜角為(  )
A.60°B.60°或300°C.30°D.30°或330°

分析 設(shè)直線的傾斜角為α,α∈[0,π).可得tanα=-$\frac{cos30{0}^{°}}{sin30{0}^{°}}$,利用誘導(dǎo)公式即可得出.

解答 解:設(shè)直線的傾斜角為α,α∈[0,π).
∴tanα=-$\frac{cos30{0}^{°}}{sin30{0}^{°}}$=-$\frac{cos6{0}^{°}}{-sin6{0}^{°}}$=$\frac{sin3{0}^{°}}{cos3{0}^{°}}$=tan30°,
∴α=30°
故選:C.

點評 本題考查了直線的斜率與傾斜角的關(guān)系、誘導(dǎo)公式、三角函數(shù)求值,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.寫出函數(shù)y=-(x-1)2單調(diào)增區(qū)間(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-x+c
(1)求f(x)在[0,1]的最大值和最小值;
(2)求證:對任意x1,x2∈[0,1],總有|f(x1)-f(x2)|≤$\frac{1}{4}$;
(3)若函數(shù)y=f(x)在區(qū)間[0,2]上有2個零點,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)為偶函數(shù),且在(0,+∞)上是減函數(shù),又f(3)=0則$\frac{f(x)+f(-x)}{x}$<0的解集為( 。
A.(-3,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(3,+∞)D.(-∞,-3)∪(0,+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y均為非負實數(shù),且滿足$\left\{\begin{array}{l}{x+y≤1}\\{4x+y≤2}\end{array}\right.$,則z=x+2y的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知y=4x3+3tx2-6t2x+t-1,x∈R,t∈R.
(1)當(dāng)x為常數(shù),且t在區(qū)間[${0,\frac{{\sqrt{3}}}{6}}$]變化時,求y的最小值φ(x);
(2)證明:對任意的t∈(0,+∞),總存在x∈(0,1),使得y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.求值:arcsin(cos$\frac{4π}{7}$)=-$\frac{π}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求和:Sn=$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)×(2n+1)}$,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左、右焦點分別為F1,F(xiàn)2,P為橢圓C上一點,滿足PF1=3PF2,則點P到右準(zhǔn)線的距離為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案