設(shè)x,y∈R,向量
a
=(x,-1),
b
=(1,y),
c
(4,-2),且
a
c
,
b
c
,則|
a
-
b
|=(
A、
5
B、
10
C、2
5
D、10
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用向量共線定理、向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:∵向量
a
=(x,-1),
b
=(1,y),
c
(4,-2),且
a
c
,
b
c

∴-4+2x=0,4-2y=0.
解得x=2,y=2.
a
-
b
=(2,-1)-(1,2)=(1,-3),
∴|
a
-
b
|=
12+32
=
10

故選:B.
點評:本題考查了向量共線定理、向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{m,n}={1,2},則m2+n2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐D-ABC及其三視圖中的主視圖和左視圖如圖所示,則棱BD的長為( 。
A、4
2
B、4
C、3
2
D、2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F(c,0)是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,若雙曲線C的漸近線與圓M:(x-c)2+y2=
c2
4
相切,則雙曲線的離心率為(  )
A、
2
3
3
B、
2
C、
3
D、
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是(  )
A、若a>b,則ac2>bc2
B、若a>b,c<b,則a>c
C、若a>b,c<d,則a-c<b-d
D、若a>b,則an>bn(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx-2與拋物線y2=6x交于A、B兩點,且線段AB的中點的縱坐標(biāo)為3,則k的值是( 。
A、1B、-2
C、1或-2D、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M是ex+e-x的最小值,N=
2tan22.5°
1-tan222.5°
,則下圖所示程序框圖輸出的S為( 。
A、2
B、1
C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若單位向量
a
,
b
滿足|
a
-
b
|=|
a
+
b
|,則
a
a
-
b
的夾角大小為(  )
A、
π
4
B、
π
3
C、
4
D、
2
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:f(x)=x2+1在(1,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案