利用“五點法”作出函數(shù)y=2sinx,x∈[0,2π]的簡圖,并回答下列問題.
(1)觀察所作圖象,寫出滿足條件sinx>0的x的區(qū)間;
(2)直線y=-1與你所作的圖象有幾個交點?
考點:五點法作函數(shù)y=Asin(ωx+φ)的圖象,正弦函數(shù)的圖象
專題:作圖題,三角函數(shù)的圖像與性質(zhì)
分析:(1)用五點法作函數(shù)y=Asin(ωx+φ)的圖象,結(jié)合函數(shù)y=Asin(ωx+φ)的圖象特征,寫出滿足條件sinx>0的x的取值集合.
(2)先做出直線y=-1的圖象,從而求得交點的個數(shù).
解答: 解:(1)列表:
 x      0      
π
2
 π     
2
     2π
 2sinx 0 2 0-2 0
圖象如圖所示:

由圖象可知,滿足條件sinx>0的x的取值集合為(0,π).
(2)觀察直線y=-1的圖象可知與所作的圖象有2個交點.
點評:本題主要考查用五點法作函數(shù)y=Asin(ωx+φ)的圖象,函數(shù)y=Asin(ωx+φ)的圖象特征,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是增函數(shù),f(1)=0
(1)求滿足不等式f(x)<0的實數(shù)x的取值范圍;
(2)設(shè)函數(shù)g(θ)=sin2θ+m•cosθ-2m,若集合M={m|g(θ)<0},集合 N={m|f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7個排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭;
(2)甲不排頭,也不排尾;
(3)甲、乙、丙三人必須在一起;
(4)甲、乙、丙三人互不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)在(1)的條件下,求函數(shù)f(x)的單調(diào)區(qū)間,并確定其極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x-1
2x+1
(x∈R).
(1)判斷并證明函數(shù)f(x)的單調(diào)性;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若不等式f(1-m)+f(1-m2)<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次考試中,甲,乙,丙三人合格(互不影響)的概率分別是
2
5
,
3
4
1
3
.考試結(jié)束后,最容易出現(xiàn)幾人合格的情況?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面上有9個點,其中有4個點共線,除此外無3點共線.
(1)經(jīng)過這9個點可確定多少條直線?
(2)以這9個點為頂點,可確定多少個三角形?
(3)以這9個點為頂點,可以確定多少個四邊形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實數(shù),f(x)=(x2-4)(x-a).
(1)若f(x)在(-∞,-2]和[2,+∞)上都是遞增的,求a的取值范圍.
(2)若函數(shù)g(x)=f(x)+ax2在定義域內(nèi)有三個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論函數(shù)f(x)=loga
x+1
x-1
(a>0且a≠1)在(1,+∞)上的單調(diào)性,并用單調(diào)性的定義予以證明.

查看答案和解析>>

同步練習(xí)冊答案