【題目】已知函數(shù)有且僅有三個零點,并且這三個零點構(gòu)成等差數(shù)列,則實數(shù)a的值為_______

【答案】

【解析】

利用函數(shù)與方程之間的關(guān)系,轉(zhuǎn)化為兩個函數(shù)交點問題,結(jié)合分段函數(shù)的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.

函數(shù)0,

得|x+a|a=3,

設(shè)gx)=|x+a|ahx)=3,

則函數(shù)gx

不妨設(shè)fx)=0的3個根為x1,x2,x3,且x1x2x3

當(dāng)x>﹣a時,由fx)=0,得gx)=3,即x3,

x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,

解得x=﹣1,或x=4;

若 ①﹣a≤﹣1,即a≥1,此時 x2=﹣1,x3=4,由等差數(shù)列的性質(zhì)可得x1=﹣6,

f(﹣6)=0,即g(﹣6)=3得62a=3,解得a,滿足fx)=0在(﹣∞,﹣a]上有一解.

若②﹣1<﹣a≤4,即﹣4≤a<1,則fx)=0在(﹣∞,﹣a]上有兩個不同的解,不妨設(shè)x1,x2,其中x3=4,

所以有x1x2是﹣x2a=3的兩個解,即x1x2x2+(2a+3)x+4=0的兩個解.

得到x1+x2=﹣(2a+3),x1x2=4,

又由設(shè)fx)=0的3個根為x1,x2,x3成差數(shù)列,且x1x2x3,得到2x2x1+4,

解得:a=﹣1(舍去)或a=﹣1

③﹣a>4,即a<﹣4時,fx)=0最多只有兩個解,不滿足題意;

綜上所述,a或﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為F,離心率為,直線l:與橢圓E相交于A,B兩點,

1求橢圓E的標(biāo)準(zhǔn)方程;

2延長AF交橢圓E于點M,延長BF交橢圓E于點N,若直線MN的斜率為1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機械計算機年,萊布尼茨改進(jìn)了帕斯卡的計算機,但萊布尼茲認(rèn)為十進(jìn)制的運算在計算機上實現(xiàn)起來過于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念之后,人們對進(jìn)位制的效率問題進(jìn)行了深入的研究研究方法如下:對于正整數(shù),我們準(zhǔn)備張不同的卡片,其中寫有數(shù)字0,1,…,的卡片各有如果用這些卡片表示進(jìn)制數(shù),通過不同的卡片組合,這些卡片可以表示個不同的整數(shù)例如,時,我們可以表示出個不同的整數(shù)假設(shè)卡片的總數(shù)為一個定值,那么進(jìn)制的效率最高則意味著張卡片所表示的不同整數(shù)的個數(shù)最大根據(jù)上述研究方法,幾進(jìn)制的效率最高?  

A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為軸,直線軸于點,,為橢圓上的動點,的面積的最大值為1.

(1)求橢圓的方程;

(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人事部門對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計,繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級成功,否則晉級失敗(滿分為100分).

(1)求圖中的值;

(2)估計該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);

(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級成功”與性別有關(guān).

晉級成功

晉級失敗

合計

16

50

合計

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進(jìn)一步的認(rèn)識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計分析,得出下表數(shù)據(jù):

x

4

5

7

8

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長為2個單位)的頂點處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點數(shù)為,則棋子就按逆時針方向行走個單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點處的所有不同走法共有( )

A. 22種 B. 24種 C. 25種 D. 27種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時,拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?

查看答案和解析>>

同步練習(xí)冊答案