精英家教網 > 高中數學 > 題目詳情

(本小題15分)設拋物線和點,.斜率為的直線與拋物線相交不同的兩個點.若點恰好為的中點.
(1)求拋物線的方程,
(2) 拋物線上是否存在異于的點,使得經過點的圓和拋物線處有相同的切線.若存在,求出點的坐標;若不存在,請說明理由.

(1). (2) 存在

解析試題分析:(1) …………………6分
(2)由(1)得.假設拋物線上存在點
設圓的圓心坐標為,則,
…………………10分   
而拋物線在點處的斜率為,又因為,且該切線與垂直,
,
代入上式得,故存在 …………………15分
考點:本題考查直線與圓錐曲線的基礎知識以及拋物線與圓的幾何性質。
點評:本題主要考查了直線與圓錐曲線的綜合問題,考查學生的基本思想與運算能力、探究能力和推理能力

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點,試在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求出這個最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數k值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(10分)已知拋物線的頂點是雙曲線的中心,而焦點是雙曲線的頂點,求拋物線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)求雙曲線的焦點坐標,離心率和漸近線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知拋物線的準線經過雙曲線的左焦點,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程; (2)求雙曲線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是雙曲線的兩個焦點,點在雙曲線上,且
,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分13分)已知動圓與直線相切,且與定圓 外切,求動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在ABC中,C=90°,AC="b," BC="a," P為三角形內的一點,且,
(Ⅰ)建立適當的坐標系求出P的坐標;
(Ⅱ)求證:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分別為直徑的三個圓的面積之和的最小值,并求出此時的b值.

查看答案和解析>>

同步練習冊答案