分析 (1)第一步確定切點(diǎn);第二步求斜率,即求曲線上該點(diǎn)的導(dǎo)數(shù);第三步利用點(diǎn)斜式求出直線方程.
(2)根據(jù)可導(dǎo)函數(shù)極值的定義,找到極值點(diǎn),求出極值,當(dāng)極大值為正數(shù)時(shí),從而判定負(fù)整數(shù)是否存在;
(3)利用單調(diào)性與極值的關(guān)系,求證:既存在極大值,有存在極小值.
解答 解:(1)∵$f′(x)=\frac{a{e}^{x}(x-1)}{{x}^{2}}+1$,f′(1)=1,f(1)=ae+1
∴函數(shù)f(x)在(1,f(1))處的切線方程為:y-(ae+1)=x-1,又直線過(guò)點(diǎn)(0,-1)
∴-1-(ae+1)=-1,解得:a=-$\frac{1}{e}$ …(2分)
(2)若a<0,∵$f′(x)=\frac{a{e}^{x}(x-1)}{{x}^{2}}+1$(x≠0),
當(dāng)x∈(-∞,0)時(shí),f′(x)>0恒成立,函數(shù)在(-∞,0)上無(wú)極值;
當(dāng)x∈(0,1)時(shí),f′(x)>0恒成立,函數(shù)在(0,1)上無(wú)極值;
在x∈[1,+∞)時(shí),令H(x)=aex(x-1)+x2,則H′(x)=(aex+2)x,
∵x∈(1,+∞),∴ex∈(e,+∞,)∵a為負(fù)整數(shù)∴a≤-1,∴aex≤ae≤-e
∴aex+2<0,∴H′(x)<0,∴H(x)在(1,+∞)上單調(diào)減,
又H(1)=1>0,H(2)=ae2+4≤-e2+4<0∴?x0∈(1,2),使得H(x0)=0 …(5分)
且1<x<x0時(shí),H′(x)>0,即f′(x)>0;x>x0時(shí),H′(x)<0,即f′(x)<0;
∴f(x)在x0處取得極大值$f({x}_{0})=\frac{a{e}^{{x}^{0}}}{{x}_{0}}+{x}_{0}$ (*)
又H(x0)=aex0(x0-1)+x02=0,∴$\frac{ae{x}_{0}}{{x}_{0}}=-\frac{{x}_{0}}{{x}_{0}-1}$代入(*)得:
$f({x}_{0})=-\frac{{x}_{0}}{{x}_{0}-1}+{x}_{0}=\frac{{x}_{0}({x}_{0}-2)}{{x}_{0}-1}<0$,∴不存在負(fù)整數(shù)a滿足條件. …(8分)
(3)設(shè)g(x)=aex(x-1)+x2,則g′(x)=(aex+2)x,
因?yàn)閍>0,所以,當(dāng)x>0時(shí),g′(x)>0,g(x)單調(diào)遞增;
當(dāng)x<0時(shí),g′(x)<0,g(x)單調(diào)遞減;故g(x)至多兩個(gè)零點(diǎn).
又g(0)=-a<0,g(1)=1>0,所以存在x1∈(0,1),使g(x1)=0
再由g(x)在(0,+∞)上單調(diào)遞增知,
當(dāng)x∈(0,x1)時(shí),g(x)<0,故f′(x)=$\frac{g(x)}{{x}^{2}}<0$,f(x)單調(diào)遞減;
當(dāng)x∈(x2,+∞)時(shí),g(x)>0,故故f′(x)=$\frac{g(x)}{{x}^{2}}>0$,f(x)單調(diào)遞增;
所以函數(shù)f(x)在x1處取得極小值. …(12分)
當(dāng)x<0時(shí),ex<1,且x-1<0,
所以g(x)=aex(x-1)+x2>a(x-1)+x2=x2+ax-a,
函數(shù)y=x2+ax-a是關(guān)于x的二次函數(shù),必存在負(fù)實(shí)數(shù)t,使g(t)>0,又g(0)=-a<0,
故在(t,0)上存在x2,使g(x2)=0,
再由g(x)在(-∞,0)上單調(diào)遞減知,
當(dāng)x∈(-∞,x2)時(shí),g(x)>0,故f′(x)=$\frac{g(x)}{{x}^{2}}>0$,f(x)單調(diào)遞增;
當(dāng)x∈(x2,0)時(shí),g(x)<0,故f′(x)=$\frac{g(x)}{{x}^{2}}<0$,f(x)單調(diào)遞減;
所以函數(shù)f(x)在x2處取得極大值.
綜上,函數(shù)f(x)既有極大值,又有極小值.…(16分)
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的幾何意義及可導(dǎo)函數(shù)極值的求解,并運(yùn)用了分類討論的解題方法,對(duì)學(xué)生的思維強(qiáng)度要求高,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+2y-3=0 | B. | 2x-y-3=0 | C. | 2x+y-3=0 | D. | x+2y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30 | B. | 31 | C. | 32 | D. | 33 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${a^{\frac{1}{4}}}$ | B. | ${a^{\frac{2}{5}}}$ | C. | ${a^{\frac{7}{8}}}$ | D. | ${a^{\frac{5}{8}}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com