若函數(shù)f(x)=(x-1)(x-3)+(x-3)(x-4)+(x-4)(x-1),則函數(shù)f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(  )
A、(1,3)和(3,4)內(nèi)
B、(-∞,1)和(1,3)內(nèi)
C、(3,4)和(4,+∞)內(nèi)
D、(-∞,1)和(4,+∞)內(nèi)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)=(x-1)(x-3)+(x-3)(x-4)+(x-4)(x-1)可求f(1)、f(3)、f(4);從而確定函數(shù)的零點(diǎn)的區(qū)間.
解答: 解:∵f(x)=(x-1)(x-3)+(x-3)(x-4)+(x-4)(x-1),
∴f(1)=(-2)×(-3)=6>0,
f(3)=(3-4)(3-1)=-2<0,
f(4)=(4-1)(4-3)=3>0;
故f(1)f(3)<0,f(3)f(4)<0;
故函數(shù)f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(1,3)和(3,4)內(nèi);
故選A.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)的判定定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn)
(1)求證:直線BD1∥平面PAC
(2)求證:直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x•ekx(k≠0).
(1)求函數(shù)在(0,f(0))處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△BCD與△ABC的面積之比為2,點(diǎn)P是區(qū)域ABCD內(nèi)任意一點(diǎn)(含邊界),且
AP
AB
AC
(λ,μ∈R),則λ+μ的取值范圍是( 。
A、[0,1]
B、[0,2]
C、[0,3]
D、[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3-3ax2+8,若f(x)存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、(-∞,0)∪[2,+∞)
C、[0,2]
D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R).
(1)若a=0,當(dāng)x∈[
1
2
,1]時(shí)恒有f(x)≥0,求b 的取值范圍;
(2)若a≠0且b=-1,試在直角坐標(biāo)平面內(nèi)找出橫坐標(biāo)不同的兩個(gè)點(diǎn),使得函數(shù)y=f(x)的圖象永遠(yuǎn)不經(jīng)過(guò)這兩點(diǎn);
(3)若a≠0,函數(shù)y=f(x)在區(qū)間[3,4]上至少有一個(gè)零點(diǎn),求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若|x+a|-|x-4|≤5-|a+1|(x∈R)恒成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知(n2+n)an+1=(n2+2n+1)an,n∈N+,且a1=1,求an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論中正確的是( 。
①命題:?x∈(0,2),3x>x3的否定是?x∈(0,2),3x≤x3;
②若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;
③若隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<2)=0.8,則P(0<ξ<1)=0.2;
④等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4=3,則S7=21.
A、①②B、②③C、③④D、①④

查看答案和解析>>

同步練習(xí)冊(cè)答案