已知函數(shù).
(1)若函數(shù)在定義域內為增函數(shù),求實數(shù)的取值范圍;
(2)設,若函數(shù)存在兩個零點,且實數(shù)滿足,問:函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請說明理由.
(1);(2)在處的切線不能平行于軸.
【解析】
試題分析:(1)函數(shù)在定義域內為增函數(shù),則其導數(shù)恒大于等于0.求導得:
.由得:.要恒成立,只需即可.接下來利用重要不等式可求出的最小值.
由題意,知恒成立,即.
(2)本題屬探索性問題.對探索性問題,常用的方法是假設成立,然后利用題設試著去求相關的量.若能求出來,則成立;若無解,則不成立.
在本題中,總的方向如下:首先假設在的切線平行于軸,則是的極值點,故有.又函數(shù)存在兩個零點,所以,再加上,這樣有4個方程(4個未知數(shù)).接下來就試著求.若能求出,則切線能平行于軸(同時也就求出了該切線方程);若不能求出,則切線不能平行于軸.
試題解析:(1)
由題意,知恒成立,即.
又,當且僅當時等號成立.
故,所以.
(2)將求導得:.
存在兩個零點,所以.
設在的切線平行于軸,則.
結合題意,有,
①—②得
所以由④得
所以 ……………………………………⑤
設,⑤式變?yōu)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204264654806363/SYS201404120427243448735086_DA.files/image031.png">
設,
所以函數(shù)在上單調遞增,
因此,,即
也就是,,此式與⑤矛盾.所以在處的切線不能平行于軸.
考點:1、函數(shù)的單調性;2、函數(shù)的零點;3、函數(shù)的導數(shù)及其應用.
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調區(qū)間;(2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;(3)設函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆寧夏高二上學期期末考試文科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調區(qū)間;
(2)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年湖南省岳陽市高三第一次質量檢測理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖北省華中師大一附中高三上學期期中檢測文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學 來源:吉林省10-11學年高二下學期期末考試數(shù)學(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程有兩個不相等實根的概率;
(2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求方程沒有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com