【題目】設全集為R,集合A={x|-3<x<4},B={x|1≤x≤10}.
(1)求A∪B,A∩(RB);
(2)已知集合C={x|2a-1≤x≤a+1},若C∩A=C,求實數(shù)a的取值范圍.
【答案】(1)A∪B={x|-3<x≤10};A∩(RB)={x|-3<x<1} (2)(-1,+∞)
【解析】
(1)進行交集、并集和補集的運算即可;
(2)根據(jù)C∩A=C即可得出CA,從而可討論C是否為空集:C=時,2a-1>a+1;C≠時,,解出a的范圍即可.
(1)∵A={x|-3<x<4},B={x|1≤x≤10},
∴A∪B={x|-3<x≤10},RB={x|x<1或x>10},A∩(RB)={x|-3<x<1};
(2)∵C∩A=C,
∴CA,且C={x|2a-1≤x≤a+1},
∴C=時,2a-1>a+1,解得a>2,
C≠時,,解得-1<a≤2,
綜上得,實數(shù)a的取值范圍為(-1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】某學校在九年級上學期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到頻率分布直方圖(如圖),且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請估計學生的跳繩個數(shù)的眾數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個數(shù)在,兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求2人得分之和不大于34分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】輪船A從某港口O要將一些物品送到正航行的輪船B上,在輪船A出發(fā)時,輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以15海里/時的航速沿正東方向勻速行駛,假設輪船A沿直線方向以v海里/時的航速勻速行駛,經(jīng)過t小時與輪船B相遇,
(1)若使相遇時輪船A航距最短,則輪船A的航行速度的大小應為多少?
(2)假設輪船B的航行速度為30海里/時,輪船A的最高航速只能達到30海里/時,則輪船A以多大速度及沿什么航行方向行駛才能在最短時間內(nèi)與輪船B相遇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面四邊形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面積為2.
(1)求AD的長;
(2)求△CBD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且x>0時,f(x)=x2-4x+3.
求:(1)f(x)的解析式.
(2)已知t>0,求函數(shù)f(x)在區(qū)間[t,t+1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以為首項的數(shù)列滿足:.
(1)當時,且,寫出、;
(2)若數(shù)列是公差為-1的等差數(shù)列,求的取值范圍;
(3)記為的前項和,當時,
①給定常數(shù),求的最小值;
②對于數(shù)列,,…,,當取到最小值時,是否唯一存在滿足的數(shù)列?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com