復(fù)數(shù)
i
2+i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是
 
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)的除法運(yùn)算化簡為a+bi(a,b∈R)的形式,則答案可求.
解答: 解:
i
2+i
=
i•(2-i)
(2+i)(2-i)
=
1+2i
5
=
1
5
+
2
5
i

∴復(fù)數(shù)
i
2+i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是(
1
5
2
5
)

故答案為:(
1
5
,
2
5
)
點(diǎn)評:本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某圓錐曲線有下列信息:
①曲線是軸對稱圖形,且兩坐標(biāo)軸都是對稱軸;
②焦點(diǎn)在x軸上且焦點(diǎn)到坐標(biāo)原點(diǎn)的距離為1;
③曲線與坐標(biāo)軸的交點(diǎn)不是兩個(gè);
④曲線過點(diǎn)A(1,
3
2
).
(1)判斷該圓錐曲線的類型并求曲線的方程;
(2)點(diǎn)F是改圓錐曲線的焦點(diǎn),點(diǎn)F′是F關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),點(diǎn)P為曲線上的動(dòng)點(diǎn),探求以|PF|以及|PF|•|PF′|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-4|+|x+4|≤m的解集為空集,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2為橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),已知P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①“x<1”是“x2<1”的充分不必要條件
②若f(x)是定義在[-1,1]的偶函數(shù)且在[-1,0]上是減函數(shù),θ∈(
π
4
π
2
),則f(sinθ)<f(cosθ)
③若f(x)的圖象在點(diǎn)A(1,f(1))處的切線方程是y=
1
2
x+2,則f(1)+f′(1)=3
④若f(x)=lg(
x2+1
-x),則f(lg2)+f(lg
1
2
)=0
⑤函數(shù)f(x)=ex+x-2在區(qū)間(0,1)上有零點(diǎn).
其中所有正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線2x-y+1=0的傾斜角為θ,則
1
sin2θ-cos2θ
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓4x2+y2=1與直線y=x+m有公共點(diǎn),則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對邊的長為a,b,c.若tan
A+B
2
=sinC
,則下列命題正確的是
 
.(寫出所有正確命題的序號(hào))
①sin2A+sin2B=tanAtanB;  ②acosB+bcosA=c;  ③acosA=bcosB;
④acosB≤bcosA;   ⑤c<a+b≤
2
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m∈(0,3),則直線(m+2)x+(3-m)y-3=0與x軸、y軸圍成的三角形的面積小于
9
8
的概率是( 。
A、
1
3
B、
1
2
C、
2
3
D、
1
6

查看答案和解析>>

同步練習(xí)冊答案