精英家教網 > 高中數學 > 題目詳情
5.等比數列{an}中,已知a1=2,a4=16.
(1)求數列{an}的通項公式an;
(2)若a3,a5分別是等差數列{bn}的第4項和第16項,求數列{bn}的通項公式及前n項和Sn

分析 (1)利用等比數列通項公式能求出首項和公差,由此能求出數列{an}的通項公式an
(2)由等比數列通項公式求出等差數列{bn}的第4項和第16項,再由等差數列通項公式求出首項與公差,由此能求出數列{bn}的通項公式及前n項和Sn

解答 解:(1)∵等比數列{an}中,已知a1=2,a4=16,
∴2q3=16,解得q=2,
∴${a}_{n}=2×{2}^{n-1}={2}^{n}$.
(2)∵a3,a5分別是等差數列{bn}的第4項和第16項,
∴$_{4}={a}_{3}={2}^{3}=8$,$_{16}={a}_{5}={2}^{5}=32$,
∴$\left\{\begin{array}{l}{_{4}=_{1}+3d=8}\\{_{16}=_{1}+15d=32}\end{array}\right.$,
解得b1=2,d=2,
∴bn=2+(n-1)×2=2n.
Sn=$2n+\frac{n(n-1)}{2}×2$=n2+n.

點評 本題考查數列的通項公式及前n項和的求法,是基礎題,解題時要認真審題,注意等差數列、等比數列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

4.設x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,若目標函數z=$\frac{x}{a}$+$\frac{y}$(a>0,b>0)的最大值為10,則5a+4b的最小值為8.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.下列說法錯誤的是( 。
A.等比數列可以是遞增、遞減、擺動、常數數列
B.等差數列不可能是擺動數列
C.既是等差數列又是等比數列的數列有且只有一個
D.數列通項公式可能不止一個

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{2}$,|$\overrightarrow{a}$-$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知α,β是兩個不同的平面,a,b,c是三條不同的直線,則下列條件中,是a∥b的充分條件的個數為(  )
①α∥β,a?α,b∥β;②a∥c,且b∥c;
③α∩β=c,a?α,b?β,a∥β,b∥α;④a⊥c,且b⊥c.
A.2B.0C.3D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.等腰梯形ABCD中,AD∥BC,AC、BD交于點Q,AC平分∠DAB,AP為梯形ABCD外接圓的切線,交BD的延長線于點P.
(Ⅰ)求證:PQ2=PD•PB
(Ⅱ)若AB=3,AP=2,AD=$\frac{4}{3}$,求AQ的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F是棱CD的中點.
(1)求證:EF∥B1D1;
(2)求二面角C1-EF-A的大。ńY果用反三角函數值表示).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.給出以下數對序列
(1,1)
(1,2)(2,1)
(1,3),(2,2),(3,1)
(1,4),(2,3),(3,2),(4,1)

記第m行的第n個數對為am,n,如a4,2=(2,3),則ai,j=(j,1+i-j).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知直線l:$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2.
(Ⅰ) 若點M的直角坐標為(2,$\sqrt{3}$),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
(Ⅱ)設曲線C經過伸縮變換$\left\{\begin{array}{l}{x^/}=\sqrt{3}x\\{y^/}=y\end{array}$得到曲線C′,求曲線C′的內接矩形周長的最大值.

查看答案和解析>>

同步練習冊答案