分析 根據(jù)條件對$|\overrightarrow{a}-\overrightarrow|=2$兩邊平方即可得出$(\overrightarrow{a}-\overrightarrow)^{2}=4$,進行向量數(shù)量積的運算便可得出$9-2\overrightarrow{a}•\overrightarrow=4$,從而便可求出$\overrightarrow{a}•\overrightarrow$的值.
解答 解:根據(jù)條件,
$|\overrightarrow{a}-\overrightarrow{|}^{2}={\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$
=$1-2\overrightarrow{a}•\overrightarrow+8$
=$9-2\overrightarrow{a}•\overrightarrow$
=4;
∴$\overrightarrow{a}•\overrightarrow=\frac{5}{2}$.
故答案為:$\frac{5}{2}$.
點評 考查向量長度的概念及表示,向量數(shù)量積的運算及計算公式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4-π | B. | π-2 | C. | 1-$\frac{π}{2}$ | D. | 1-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-lnx | B. | y=x${\;}^{\frac{1}{3}}$ | C. | y=tanx | D. | y=e-x-ex |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$ | B. | $\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}$ | C. | $\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}$ | D. | $\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | (?p)∧q | C. | p∧(?q) | D. | (?p)∧(?q) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com