A. | (0,1) | B. | (1,+∞) | C. | (0,$\sqrt{2}$) | D. | ($\sqrt{2}$,+∞) |
分析 由雙曲線的對稱性知D在x軸上,設(shè)D(x,0),則由BD⊥AB得$\frac{^{2}}{\frac{a}{c-x}}$•$\frac{^{2}}{\frac{a}{c-x}}$=-1,求出c-x,利用D到直線BC的距離小于a+$\sqrt{{a}^{2}+^{2}}$,即可得出結(jié)論.
解答 解:由題意,A(a,0),B(c,$\frac{^{2}}{a}$),C(c,-$\frac{^{2}}{a}$),由雙曲線的對稱性知D在x軸上,
設(shè)D(x,0),則由BD⊥AB得$\frac{^{2}}{\frac{a}{c-x}}$•$\frac{^{2}}{\frac{a}{c-x}}$=-1,
∴c-x=$\frac{^{4}}{{a}^{2}(a-c)}$,
∵D到直線BC的距離小于a+$\sqrt{{a}^{2}+^{2}}$,
∴c-x=|$\frac{^{4}}{{a}^{2}(a-c)}$|<a+$\sqrt{{a}^{2}+^{2}}$,
∴$\frac{^{4}}{{a}^{2}}$<c2-a2=b2,
∴0<$\frac{a}$<1,
故選:A.
點評 本題考查雙曲線的性質(zhì),考查學(xué)生的計算能力,確定D到直線BC的距離是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | 2$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | 2-i | D. | 2+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{2}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\sqrt{10}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$+$\frac{3}{2}$i | B. | $\frac{1}{2}$+$\frac{3}{2}$i | C. | -$\frac{1}{2}$-$\frac{3}{2}$i | D. | $\frac{1}{2}$-$\frac{3}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{7}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | $4+2\sqrt{2}$ | D. | $5+\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2,3} | ||
C. | {3,4} | D. | {-3,-2,-1,0,1,2,3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com