【題目】設Sn為數(shù)列{an}的前n項和,已知a1≠0,2an﹣a1=S1Sn , n∈N*
(1)求a1a2 , 并求數(shù)列{an}的通項公式,
(2)求數(shù)列{nan}的前n項和Tn

【答案】
(1)解∵a1≠0,2an﹣a1=S1Sn,n∈N*

令n=1得a1=1,令n=2得a2=2.

當n≥2時,由2an﹣1=Sn,2an1﹣1=Sn1,兩式相減得an=2an1

又a1≠0,則an≠0,

于是數(shù)列{an}是首項為1,公比為2的等比數(shù)列,

∴通項公式


(2)解由(1)知,nan=n2n1,

Tn=1+2×2+3×22+…+n×2n1,

2Tn=2+2×22+3×23+…+(n﹣1)×2n1+n×2n,

∴﹣Tn=1+2+22+…+2n1﹣n×2n= ﹣n×2n=(1﹣n)×2n﹣1,

∴Tn=(n﹣1)×2n+1


【解析】(1)利用遞推式與等比數(shù)列的通項公式可得an;(2)利用“錯位相減法”、等比數(shù)列前n項和公式即可得出.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,設當箭頭a指向①處時,輸出的S的值為m,當箭頭a指向②處時,輸出的S的值為n,則m+n=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA平面ABC,AB⊥AC,PA=AC=3,AB=,BE=EC,AD=2DC.

(1)證明:DE⊥平面PAE;

(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù).,若方程在區(qū)間上有四個不同的根,則

A. -8 B. -4 C. 8 D. -16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個幾何體三視圖的正視圖和側(cè)視圖為邊長為2銳角60°的菱形,俯視圖為正方形,則此幾何體的內(nèi)切球表面積為(

A.8π
B.4π
C.3π
D.2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定下列命題:①“α=,tan α=1”的逆否命題;②f(x)=cos x,f(x)為周期函數(shù);③“a=b,|a|=|b|”的逆命題;④“xy=0,x,y中至少有一個為零的否命題.其中真命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若AB邊上的高為 ,且a2+b2=2 ab,則C=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風景區(qū)的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標系xoy,則曲線符合函數(shù)y=x+ (1≤x≤9)模型,設PM=x,修建兩條道路PM,PN的總造價為f(x)萬元,題中所涉及的長度單位均為百米.

(1)求f(x)解析式;
(2)當x為多少時,總造價f(x)最低?并求出最低造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

同步練習冊答案