16.如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點(diǎn),F(xiàn)是CD的中點(diǎn),EF交BD于G,交AC于H,若AD=5,BC=8,則GH=$\frac{3}{2}$.

分析 根據(jù)梯形中位線等于兩底和的一半,三角形中位線等于底邊長(zhǎng)的一半,分別求出EF,EG,HF的長(zhǎng)度,可得GH的長(zhǎng).

解答 解:梯形ABCD中,AD=5,BC=8,E是AB的中點(diǎn),F(xiàn)是CD的中點(diǎn),
故EF是梯形ABCD的中位線,
故EF=$\frac{1}{2}$(AD+BC)=$\frac{13}{2}$,
∵AD∥BC∥EF,
∴EG,F(xiàn)H分別是△ABD和△ACD的中位線,故EG=FH=$\frac{1}{2}$AD=$\frac{5}{2}$,
故GH=EF-EG-FH=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平行線分線段成比例定理,三角形中位線定理,梯形中位線定理,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.計(jì)算sin$\frac{7}{3}$πcos(-$\frac{23}{6}$π)+tan(-$\frac{11}{4}$π)cos$\frac{13}{3}$π=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓x2+y2-2x-2y+1=0,直線l:y=kx,直線l與圓C交于A、B兩點(diǎn),點(diǎn)M的坐標(biāo)為(0,b),且滿足$\overrightarrow{MA}$⊥$\overrightarrow{MB}$.
(1)當(dāng)b=1時(shí),求k的值;
(2)當(dāng)b∈(1,$\frac{3}{2}$)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在平面直角坐標(biāo)系xOy中,角α的頂點(diǎn)是坐標(biāo)原點(diǎn),始邊為x軸的正半軸,終邊與單位圓O交于點(diǎn)A(x1,y1),α∈($\frac{π}{4}$,$\frac{π}{2}$).將角α終邊繞原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)$\frac{π}{4}$,交單位圓于點(diǎn)B(x2,y2).過(guò)A,B作x軸的垂線,垂足分別為C,D,記△AOC及△BOD的面積分別為S1,S2,且S1=$\frac{4}{3}$S2,則tanα的值等于( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=$\frac{1}{(2n+1)(2n+3)}$,則S9等于( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{4}{7}$D.$\frac{4}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將一枚質(zhì)地均勻的骰子(一種六個(gè)面分別標(biāo)有數(shù)字1、2、3、4、5、6的小正方體)連續(xù)拋擲3次,則第2次出現(xiàn)奇數(shù)點(diǎn)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖1是某高三學(xué)生進(jìn)入高中-二年來(lái)的數(shù)學(xué)考試成績(jī)莖葉圖,第1次到第 14次.考試成績(jī)依次記為A1,A2,…,A14.如圖2是統(tǒng)計(jì)莖葉圖中成績(jī)?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)算法流程圖.那么算法流程圖輸出的結(jié)果是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax+1,x≥1}\\{a{x}^{2}+x+1,x<1}\end{array}\right.$在R上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$
(1)計(jì)算f(1)+f(0)的值;
(2)計(jì)算f(x)+f(1-x)的值;
(3)若關(guān)于x的不等式:f[23x-2-x+m(2x-2-x)+$\frac{1}{2}$]<$\frac{1}{2}$在區(qū)間[1,2]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案