已知函數(shù)f(x)=
1
log
1
2
2x-2
,求函數(shù)定義域.
考點(diǎn):函數(shù)的定義域及其求法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,log
1
2
2x-2>0,化2=log
1
2
1
4
,由y=log
1
2
x在(0,+∞)上是減函數(shù)解出函數(shù)的定義域.
解答: 解:由題意可得,
log
1
2
2x-2>0
log
1
2
2x>2=log
1
2
1
4
,
又∵y=log
1
2
x在(0,+∞)上是減函數(shù),
則0<2x<
1
4
,
則0<x<
1
8

即函數(shù)定義域?yàn)椋?,
1
8
).
點(diǎn)評:本題考查了函數(shù)的定義域的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+b-1.
(1)若b=1,求f(x)的零點(diǎn);
(2)若a≠0,對任意的實(shí)數(shù)b,函數(shù)f(x)恒有相宜的兩個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=logax(a>0且a≠1)與g(x)的圖象關(guān)于點(diǎn)(2,3)對稱.
(1)求g(x)的解析式;  
(2)若f(x)<g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋內(nèi)裝有6個球,每個球上都記有從1到6的一個號碼,設(shè)號碼為n的重n2-6n+12克,這些求等可能地從袋里取出(不受重量、號碼的影響)
(1)如果任意取出1球,求其重量大于號碼數(shù)的概率;
(2)如果不放回地任意取出2球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓:x2+2y2=a,(a>0)的左焦點(diǎn)到直線y=x-2的距離為2
2
,求該橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義為在R上的奇函數(shù),當(dāng)x≥0時,f(x)=
1
2
(|x-a2|+|x-2a2|-3a2),若x∈R,都有f(x-1)≤f(x+1)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x,對于20個數(shù):a1,a2,…,a10;b1,b2,…,b10∈[0,1],且滿足:
10
i=1
f2(ai)=
10
i=1
f2(bi)
,則
10
i=1
f(ai)•f(bi)
10
i=1
f2(ai)
的最小值是(  )
A、
2
5
B、
4
5
C、
6
5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x.
(1)求函數(shù)f(x)的極值;
(2)已知f(x)在[t,t+2]上是增函數(shù),求t的取值范圍;
(3)設(shè)f(x)在[t,t+2]上最大值M與最小值m之差為g(t),試求g(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下列程序,并指出當(dāng)a=3,b=-5時的計(jì)算結(jié)果( 。
A、a=-1,b=4
B、a=0.5,b=-1.25
C、a=3,b=-5
D、a=-0.5,b=1.25

查看答案和解析>>

同步練習(xí)冊答案