解答:
解:(1)∵函數(shù)f(x)=x
3-3x,
∴f′(x)=3x
2-3=3(x-1)(x+1),
∴當(dāng)x<-1時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)-1<x<1時(shí),f′(x)<0,f(x)單調(diào)遞增;
當(dāng)x>1時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)x=-1時(shí),f′(x)=0,f(x)有極大值f(-1)=2;
當(dāng)x=1時(shí),f′(x)=0,f(x)有極小值f(1)=-2.
∴f(x)的極大值為2,極小值為-2.
(2)由(1)知:f(x)單調(diào)遞增區(qū)間為(-∞,-1],[1,+∞).
∵f(x)在[t,t+2]上是增函數(shù),
∴t+2≤-1或t≥1,
∴t≤-3或t≥1.
∴t的取值范圍為:(-∞,-3]∪[1,+∞).
(3)∵f(x)在[t,t+2]上最大值M與最小值m,
∴①當(dāng)t+2≤-1,即t≤-3時(shí),f(x)在區(qū)間[t,t+2]上單調(diào)遞增,
∴M=f(t+2),m=f(t),
∴g(t)=M-m=f(t+2)-f(t)=(t+2)
3-3(t+2)-(t
3-3t)=6t
2+12t+2;
②當(dāng)t≤-1<t+2,即-3<t≤-1時(shí),f(x)在區(qū)間[t,-1]上單調(diào)遞增,在[-1,t+2]上單調(diào)遞減,
∴M=f(-1)=2,
f(t+2)-f(t)=6t
2+12t+2,
(i)當(dāng)6t
2+12t+2≥0,即
-3<t≤-時(shí),
∴m=f(t)=6t
2+12t+2,
g(t)=M-m=-6t
2-12t;
(ii)當(dāng)6t
2+12t+2<0,即
-≤t≤-1時(shí),
∴m=f(t+2)=t
3+6t
2+9t+2,
g(t)=M-m=-t
3-6t
2-9t;
③當(dāng)-1<t<1時(shí),1<t+2<3,
f(x)在區(qū)間[t,1]上單調(diào)遞減,在[1,t+2]上單調(diào)遞增,
∴m=f(1)=-2,
f(t+2)-f(t)=6t
2+12t+2,
(i)當(dāng)6t
2+12t+2≥0,即
≤t<1時(shí),
∴M=f(t+2)=t
3+6t
2+9t+2,
g(t)=M-m=t
3+6t
2+9t+4;
(ii)當(dāng)6t
2+12t+2<0,即
-1<t<時(shí),
∴M=f(t)=6t
2+12t+2;
g(t)=M-m=6t
2+12t+4;
④當(dāng)t≥1時(shí),f(x)在區(qū)間[t,t+2]上單調(diào)遞增,
∴M=f(t+2),m=f(t),
∴g(t)=M-m=f(t+2)-f(t)=(t+2)
3-3(t+2)-(t
3-3t)=6t
2+12t+2.
綜上,①當(dāng)t≤-3時(shí),g(t)=6t
2+12t+2;
②當(dāng)
-3<t≤-時(shí),g(t)=M-m=-6t
2-12t;
③當(dāng)
-≤t≤-1時(shí),g(t)=M-m=-t
3-6t
2-9t;
④當(dāng)
-1<t<時(shí),g(t)=M-m=6t
2+12t+4;
⑤當(dāng)
≤t<1時(shí),g(t)=M-m=t
3+6t
2+9t+4;
⑥當(dāng)t≥1時(shí),g(t)=6t
2+12t+2.