【題目】已知函數(shù),有以下命題:

是奇函數(shù);

單調(diào)遞增函數(shù);

③方程僅有1個(gè)實(shí)數(shù)根;

④如果對(duì)任意,則的最大值為2.

則上述命題正確的有_____________.(寫出所有正確命題的編號(hào))

【答案】①②④

【解析】

根據(jù)題意,依次分析4個(gè)命題,對(duì)于①、由奇函數(shù)的定義分析可得①正確;對(duì)于②、對(duì)函數(shù)求導(dǎo),分析可得,分析可得②正確;對(duì)于③、,分析可得,即方程有一根,進(jìn)而利用二分法分析可得有一根在之間,即方程至少有2跟,故③錯(cuò)誤,對(duì)于④、由函數(shù)的恒成立問題的分析方法,分析可得④正確,綜合可得答案.

解:根據(jù)題意,依次分析4個(gè)命題:

對(duì)于①、,定義域是,且,是奇函數(shù);故①正確;

對(duì)于②、若,則,故遞增;故②正確;

對(duì)于③、,令,

可得,,即方程有一根,

,

則方程有一根在之間,

故③錯(cuò)誤;

對(duì)于④、如果對(duì)任意,都有,即恒成立,

,且

恒成立,則必有恒成立,

,即恒成立,

,若有,

故④正確;

綜合可得:①②④正確;

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),)的圖像經(jīng)過點(diǎn),且關(guān)于直線對(duì)稱,則下列結(jié)論正確的是( )

A. 上是減函數(shù)

B. 函數(shù)的最小正周期為

C. 的解集是,

D. 的一個(gè)對(duì)稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】影片《紅海行動(dòng)》里的蛟龍突擊隊(duì)在奉命執(zhí)行撤僑過程中,海軍艦長要求隊(duì)員們依次完成6項(xiàng)任務(wù),并對(duì)任務(wù)的順序提出了如下要求:重點(diǎn)任務(wù)A必須排在第2位,且任務(wù)E、F必須排在一起,則這6項(xiàng)任務(wù)的不同安排方案共有(

A.18B.36C.144D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,底面為菱形, , , 相交于點(diǎn),四邊形為直角梯形, , ,平面底面.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,、是過點(diǎn)夾角為的兩條直線,且與圓心為,半徑長為的圓分別相切,設(shè)圓周上一點(diǎn)的距離分別為、,那么的最小值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定整數(shù)(),設(shè)集合,記集合

(1)若,求集合;

(2)若構(gòu)成以為首項(xiàng),()為公差的等差數(shù)列,求證:集合中的元素個(gè)數(shù)為;

(3)若構(gòu)成以為首項(xiàng),為公比的等比數(shù)列,求集合中元素的個(gè)數(shù)及所有元素之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試求所有的正數(shù) ,使得在雙曲線的右支上總存在焦點(diǎn)弦,它關(guān)于原點(diǎn)的張角為直角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都乘以同一個(gè)非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a

B.設(shè)有一個(gè)回歸方程,變量x增加1個(gè)單位時(shí),y平均減少5個(gè)單位

C.線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱

D.在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N1,σ2)(σ0),則Pξ1)=0.5

查看答案和解析>>

同步練習(xí)冊答案