已知數(shù)列{an}滿足a1=1,an=
2
S
2
n
2Sn-1
(n≥2).
(1)求證:數(shù)列{
1
Sn
}為等差數(shù)列;
(2)求{an}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式,等差關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)直接利用遞推關(guān)系式證明數(shù)列是等差數(shù)列.
(2)利用(1)的結(jié)論利用前n項(xiàng)和法求出數(shù)列的通項(xiàng)公式,注意首項(xiàng)是否符合通項(xiàng)公式.
解答: (1)證明:an=
2
S
2
n
2Sn-1
(n≥2)
則:2Sn2=2anSn-an
2Sn2=2(Sn-Sn-1)Sn-(Sn-Sn-1)
整理得:Sn-1-Sn=2SnSn-1
所以:
1
Sn
-
1
Sn-1
=2

即:數(shù)列{
1
Sn
}為等差數(shù)列.
(2)解:由(1)得:
1
Sn
=
1
a1
+2(n-1)

則:Sn=
1
2n+1

當(dāng)n≥2時,an=Sn-Sn-1=
1
2n+1
-
1
2n-1
=-
2
(2n-1)(2n+1)

所以:an=
1(n=1)
-
2
(2n-1)(2n+1)
(n≥2)
點(diǎn)評:本題考查的知識要點(diǎn):利用定義法證明數(shù)列是等差數(shù)列,利用前n項(xiàng)和法求數(shù)列的通項(xiàng)公式.本題屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)滿足f(x+1)=-f(x),且當(dāng)x∈(0,1)時,f(x)=2x-1.則f(log210)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線m,n和平面a滿足m∥n,m∥a,n?a.求證:n∥a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)A(1,4)引一條直線l,它與x軸,y軸的正半軸交點(diǎn)分別為(a,0)和(b,0),當(dāng)a+b最小時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2cosx(sinx-cosx),x∈[
π
8
,
4
]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項(xiàng)等比數(shù)列{an}中,Sn是其前n項(xiàng)和,若a1=1,a2a6=8,則S8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x+2
1
0
f(x)dx,則
1
0
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
tanα
tanβ
=
sin(α+β)+sin(α-β)
sin(α+β)-sin(α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)當(dāng)a=4時,求函數(shù)f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案