【題目】如圖,點(diǎn)T為圓上一動(dòng)點(diǎn),過(guò)點(diǎn)T分別作x軸,y軸的垂線,垂足分別為A,B,連接BA延長(zhǎng)至點(diǎn)P,使得,點(diǎn)P的軌跡記為曲線C.
(1)求曲線C的方程;
(2)若點(diǎn)A,B分別位于x軸與y軸的正半軸上,直線AB與曲線C相交于M,N兩點(diǎn),試問(wèn)在曲線C上是否存在點(diǎn)Q,使得四邊形OMQN為平行四邊形,若存在,求出直線l方程;若不存在,說(shuō)明理由.
【答案】(1);(2)這樣的直線不存在,理由見(jiàn)解析.
【解析】
(1)設(shè),則,由題意知,所以為中點(diǎn),利用中點(diǎn)公式求得,再利用相關(guān)點(diǎn)法求軌跡方程即可;
(2)易知直線的斜率存在且不為零,設(shè)直線的方程為,由可得,聯(lián)立直線與曲線的方程可得,由韋達(dá)定理可知與的關(guān)系,利用四邊形OMQN為平行四邊形,則對(duì)角線相互平分可得,代入曲線的方程,進(jìn)而求解即可
(1)設(shè),則,
由題意知,所以為中點(diǎn),
由中點(diǎn)坐標(biāo)公式得,即,
又點(diǎn)在圓上,
故滿足,則,
所以曲線C為
(2)由題意知直線的斜率存在且不為零,
設(shè)直線的方程為,則,,
因?yàn)?/span>,所以,即①
聯(lián)立方程,消去得:,
設(shè),,
則,
因?yàn)?/span>為平行四邊形,所以為,即,
因?yàn)辄c(diǎn)在曲線上,故,整理得②
將①代入②,得,該方程無(wú)解,
故這樣的直線不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】淮北市第一次模擬考試?yán)砜乒部颊Z(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)、生物六科,安排在某兩日的四個(gè)半天考完,每個(gè)半天考一科或兩科.若語(yǔ)文、數(shù)學(xué)、物理三科中任何兩科不能排在同一個(gè)半天,則此次考試不同安排方案的種數(shù)有( )(同一半天如果有兩科考試不計(jì)順序)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
職位 | A | B | C | D | 職位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說(shuō)明理由;
(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿做了統(tǒng)計(jì),得到以下數(shù)據(jù)分布:
選擇意愿 人員結(jié)構(gòu) | 40歲以上(含40歲)男性 | 40歲以上(含40歲)女性 | 40歲以下男性 | 40歲以下女性 |
選擇甲公司 | 110 | 120 | 140 | 80 |
選擇乙公司 | 150 | 90 | 200 | 110 |
若分析選擇意愿與年齡這兩個(gè)分類(lèi)變量,計(jì)算得到的K2的觀測(cè)值為k1=5.5513,測(cè)得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率,是橢圓上的動(dòng)點(diǎn),且點(diǎn)到橢圓焦點(diǎn)的距離的最小值為1.
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)的直線交橢圓于,兩點(diǎn),當(dāng)時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿直線翻折成,連結(jié),為的中點(diǎn),則在翻折過(guò)程中,下列說(shuō)法中所有正確的是( )
A.存在某個(gè)位置,使得
B.翻折過(guò)程中,的長(zhǎng)是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體中,,均為邊長(zhǎng)為2的正三角形,且平面平面,四邊形為正方形.
(1)若平面平面,求證:平面平面;
(2)若二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計(jì),得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為.
(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認(rèn)為甲乙兩套治療方案對(duì)患者白血病復(fù)發(fā)有影響;
復(fù)發(fā) | 未復(fù)發(fā) | 總計(jì) | |
甲方案 | |||
乙方案 | 2 | ||
總計(jì) | 70 |
(2)為改進(jìn)“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機(jī)抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.
(I)求曲線在點(diǎn)處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是半圓的直徑,是半圓上除點(diǎn)外的一個(gè)動(dòng)點(diǎn),垂直于所在的平面,垂足為,,且,.
(1)證明:平面平面;
(2)當(dāng)為半圓弧的中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com