14.在以下區(qū)間中,函數(shù)f(x)=ex+x3-4存在零點(diǎn)的是( 。
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

分析 根據(jù)導(dǎo)函數(shù)判斷函數(shù)f(x)=ex+x3-4單調(diào)遞增,運(yùn)用零點(diǎn)判定定理,判定區(qū)間.

解答 解:∵函數(shù)f(x)=ex+x3-4,
∴f′(x)=ex+4
∵ex>0,∴f′(x)=ex+4>0
∴函數(shù)f(x)=ex+x3-4,在(-∞,+∞)上為增函數(shù),
f(2)=e2+23-4=e2+4>0,
f(1)=e1+13-4<0,
∴f(1)•f(2)<0,
∴函數(shù)f(x)=ex+x3-4的零點(diǎn)所在的區(qū)間為(1,2)
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性以及函數(shù)零點(diǎn)的判斷方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正三棱錐P-ABC的外接球的半徑為2,且球心在點(diǎn)A,B,C所確定的平面上,則該正三棱錐的表面積是( 。
A.3$\sqrt{2}$+3B.3($\sqrt{15}$+$\sqrt{3}$)C.3$\sqrt{15}$+3$\sqrt{2}$D.3($\sqrt{2}$+$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列命題:
①y=sin($\frac{π}{2}$+x)是偶函數(shù);
②若α,β是第一象限角,且α<β,則tanα<tanβ;
③y=tan(x+$\frac{π}{4}$)圖象的一個(gè)對(duì)稱中心是($\frac{π}{4}$,0);
④cos1<sin1<tan1.
其中所有正確命題的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,點(diǎn)A1在側(cè)面BB1C1C上的射影為正方形BB1C1C的中心M,且BB1=2$\sqrt{2}$,AB=AC=3,E為A1C1的中點(diǎn).
(1)求證:A1B∥平面B1CE;
(2)求二面角B-A1B1-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$,設(shè)E、F分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求二面角B-PD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)P直角△ABC所在平面外一點(diǎn),PA⊥平面ABC,∠A=90°,PA=1,AB=3,AC=4,則點(diǎn)P到BC的距離是$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)點(diǎn)A的極坐標(biāo)為(ρ1,θ1)(ρ1≠0,0<θ1<$\frac{π}{2}$),直線l經(jīng)過A點(diǎn),且傾斜角為α.
(1)證明:l的極坐標(biāo)方程是ρsin(θ-α)=ρ1sin(θ1-α);
(2)若O點(diǎn)到l的最短距離d=ρ1,求θ1與α間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二次函數(shù)f(x)的開口向上,且對(duì)?x∈R,都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),則實(shí)數(shù)x的取值范圍是( 。
A.(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,已知圓O的半徑長(zhǎng)為4,兩條弦AC,BD相交于點(diǎn)E,若$BD=4\sqrt{3}$,BE>DE,E為AC的中點(diǎn),$AB=\sqrt{2}AE$.
(1)求證:AC平分∠BCD;
(2)求∠ADB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案