3.二次函數(shù)f(x)的開(kāi)口向上,且對(duì)?x∈R,都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),則實(shí)數(shù)x的取值范圍是( 。
A.(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,+∞)

分析 由條件“對(duì)任意項(xiàng)x∈R都有f(x)=f(4-x)”可得函數(shù)f(x)的對(duì)稱(chēng)軸為x=2,得到函數(shù)f(x)在(-∞,2]上是單調(diào)減函數(shù),所以利用二次函數(shù)的單調(diào)性建立不等式關(guān)系,解之即可.

解答 解:∵對(duì)任意項(xiàng)x∈R都有f(x)=f(4-x),
∴函數(shù)f(x)的對(duì)稱(chēng)軸為x=2,
而函數(shù)的開(kāi)口向上,則函數(shù)f(x)在(-∞,2]上是單調(diào)減函數(shù)
∵1-2x2≤1,1+2x-x2=-(x-1)2+2≤2,f(1-2x2)<f(1+2x-x2
∴1-2x2>1+2x-x2,解得-2<x<0,
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性的應(yīng)用,以及函數(shù)圖象的對(duì)稱(chēng)性的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(x)=$\left\{\begin{array}{l}{0(x<0)}\\{π(x=0)}\\{x+1(x>0)}\end{array}\right.$,則f{f[f(-π)]}=π+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在以下區(qū)間中,函數(shù)f(x)=ex+x3-4存在零點(diǎn)的是( 。
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2x,(x>0)}\\{-{e}^{-x}(x≤0)}\end{array}\right.$,若關(guān)于P的方程f[f(x)]+m=0恰有兩個(gè)不等實(shí)根x1、x2,則x1+x2的最小值為1-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四邊形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,點(diǎn)F為PA的中點(diǎn).
(1)求證:EF⊥平面PAD;
(2)求P到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=sinθ+cosθ,曲線C3的極坐標(biāo)方程為θ=$\frac{π}{6}$.
(1)把曲線C1的參數(shù)方程化為極坐標(biāo)方程;
(2)曲線C3與曲線C1交于O、A,曲線C3與曲線C2交于O、B,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓C:x2+y2-6x-2y-6=0,其中C為圓心.
(I)若過(guò)點(diǎn)P(1,0)的直線l與圓C交于M、N兩點(diǎn),且$\overrightarrow{CM}$•$\overrightarrow{CN}$=-8,求直線l的方程;
(II)過(guò)點(diǎn)P(1,0)作圓C的兩條弦BD、EF使得$\overrightarrow{BD}$•$\overrightarrow{EF}$=0,求四邊形BEDF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在三棱柱ABC一A1B1C1中,AA1⊥平面ABC,BC⊥AC,BC=AC=2,AA1=3,D為AC的中點(diǎn).
(Ⅰ)求證:AB1∥面BDC1;
(Ⅱ)求異面直線AB與C1D所成角的余弦值;
(Ⅲ)求二面角C1-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.直線ρcosθ=2關(guān)于直線θ=$\frac{π}{4}$對(duì)稱(chēng)的直線的極坐標(biāo)方程為ρsinθ=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案