15.復(fù)數(shù)$z=\frac{-1+i}{2-i}$的虛部為( 。
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{1}{5}$D.$-\frac{1}{5}$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:$z=\frac{-1+i}{2-i}$=$\frac{(-1+i)(2+i)}{(2-i)(2+i)}=\frac{-3+i}{5}=-\frac{3}{5}+\frac{1}{5}i$,
則復(fù)數(shù)$z=\frac{-1+i}{2-i}$的虛部為:$\frac{1}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知△ABC中,AB=AC,∠BAC=120°,BC=4,若點(diǎn)P是邊BC上的動(dòng)點(diǎn),且P到AB,AC距離分別為m,n,則$\frac{4}{m}+\frac{1}{n}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知兩個(gè)無(wú)窮數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn,Tn,a1=1,S2=4,對(duì)任意的n∈N*,都有3Sn+1=2Sn+Sn+2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若{bn}為等差數(shù)列,對(duì)任意的n∈N*,都有Sn>Tn.證明:an>bn;
(3)若{bn}為等比數(shù)列,b1=a1,b2=a2,求滿足$\frac{{a}_{n}+2{T}_{n}}{_{n}+2{S}_{n}}$=ak(k∈N*)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知點(diǎn)P的坐標(biāo)(x,y)滿足$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$過(guò)點(diǎn)P的直線l與圓O:x2+y2=7交于A,B兩點(diǎn),則|AB|的最小值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在底邊為等邊三角形的斜三棱柱ABC-A1B1C1中,AA1=$\sqrt{3}$AB,四邊形B1C1CB為矩形,過(guò)A1C做與直線BC1平行的平面A1CD交AB于點(diǎn)D.
(Ⅰ)證明:CD⊥AB;
(Ⅱ)若AA1與底面A1B1C1所成角為60°,求二面角B-A1C-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一個(gè)小球從100米高處自由落下,每次著地后又跳回到原高度的一半再落下.執(zhí)行下面的程序框圖,則輸出的S表示的是( 。
A.小球第10次著地時(shí)向下的運(yùn)動(dòng)共經(jīng)過(guò)的路程
B.小球第11次著地時(shí)向下的運(yùn)動(dòng)共經(jīng)過(guò)的路程
C.小球第10次著地時(shí)一共經(jīng)過(guò)的路程
D.小球第11次著地時(shí)一共經(jīng)過(guò)的路程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若曲線C:y=x2+aln(x+1)-2上斜率最小的一條切線與直線x+2y-3=0垂直,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.函數(shù)f(x)=lnx+$\frac{1}{2}$x2+ax(a∈R),g(x)=ex+$\frac{3}{2}$x2
(1)討論f(x)的極值點(diǎn)的個(gè)數(shù);
(2)若?x>0,f(x)≤g(x),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{λ{(lán)a_n}^2+μ{a_n}+4}}{{{a_n}+2}}$,其中n∈N*,λ,μ為非零常數(shù).
(1)若λ=3,μ=8,求證:{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}是公差不等于零的等差數(shù)列.
①求實(shí)數(shù)λ,μ的值;
②數(shù)列{an}的前n項(xiàng)和Sn構(gòu)成數(shù)列{Sn},從{Sn}中取不同的四項(xiàng)按從小到大的順序組成四項(xiàng)子數(shù)列.試問(wèn):是否存在首項(xiàng)為S1的四項(xiàng)子數(shù)列,使得該子數(shù)列中點(diǎn)所有項(xiàng)之和恰好為2017?若存在,求出所有滿足條件的四項(xiàng)子數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案