8.對于集合M、N,定義M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),設A={x|x≥-$\frac{9}{4}$},B={y|y=-2x2,x∈R},則A⊕B=( 。
A.(-$\frac{9}{4}$,0]B.[-$\frac{9}{4}$,0)C.(-∞,-$\frac{9}{4}$)∪[0,+∞)D.(-∞,-$\frac{9}{4}$)∪(0,+∞)

分析 直接利用新定義,求解即可.

解答 解:對于集合M、N,定義M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),
A={x|x≥-$\frac{9}{4}$},B={y|y=-2x2,x∈R}={y|y≤0}
∴A⊕B=(A-B)∪(B-A)
∵A-B={x|x>0},B-A={y|y<-$\frac{9}{4}$},
A⊕B=(-∞,-$\frac{9}{4}$)∪(0,+∞)
故選D.

點評 本題考查集合的基本運算,新定義的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)$y=\frac{1}{{\sqrt{-{x^2}+x+2}}}$的定義域是( 。
A.(-∞,-1)B.(-1,2)C.(-∞,-1)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點($\sqrt{3}$,$\frac{1}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓Γ方程;
(Ⅱ)設直線y=x+m與橢圓Γ交于不同兩點A,B,若點P(0,1)滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)f(x)=x3-f′(2)x2+3x-5,則f′(2)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設k是一個正整數(shù),${(1+\frac{x}{k})^k}$的展開式中第三項的系數(shù)為$\frac{3}{8}$,任取x∈[0,4],y∈[0,16],則點(x,y)滿足條件y≤kx的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設M={1,2,3,4},N={2,4,6,8},則M∩N=(  )
A.{1,2,3,4,6,8}B.{2,4}C.{1,3}D.{6,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=2x+1+l.
(1)求f(1)的解析式;
(2)在所給的坐標系內(nèi)畫出函數(shù)f(x)的草圖,并求方程2f(x)-m-l=0恰有兩個不同實根時實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知ω>0,$|ϕ|<\frac{π}{2}$,若$x=\frac{π}{3}$和$x=\frac{4π}{3}$是函數(shù)f(x)=cos(ωx+ϕ)的兩個相鄰的極值點,則φ=( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知g′(x)是函數(shù)g(x)在R上的導數(shù),對?x∈R,都有g(-x)=x2-g(x),在(-∞,0)上,g′(x)>x,若g(3-t)-g(t-1)-4+2t≤0,則實數(shù)t的取值范圍為t≥2.

查看答案和解析>>

同步練習冊答案