【題目】在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的直角坐標方程,并說明它是何種曲線;

2)設點的坐標為,直線交曲線兩點,求的最大值.

【答案】1,圓;(2.

【解析】

1)將代入,即可得到曲線的直角坐標方程,并由此判斷曲線類型;

2)由直線的參數(shù)方程,可知直線過定點,將直線的參數(shù)方程與曲線的直角坐標方程聯(lián)立,可得到關于的一元二次方程,利用根與系數(shù)的關系及的幾何意義,可求的最大值.

1)解:將,,代入

,即,

曲線是以為圓心,以2為半徑的圓;

2)由直線的參數(shù)方程,可知直線過定點,

分別為直線、兩點對應的參數(shù),

,均在點的下方,

,

,(為參數(shù))代入,

,

,,

,得(舍),

由系數(shù)的幾何意義知,

,(),

,

的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,有下列四個命題:

與平面所成角為;

②三棱錐與三棱錐的體積比為;

③過點作平面,使得棱,,在平面上的正投影的長度相等,則這樣的平面有且僅有一個;

④過作正方體的截面,設截面面積為,則的最小值為.

上述四個命題中,正確命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某保險公司的某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

≥4

保費(元)

隨機調(diào)查了該險種的名續(xù)保人在一年內(nèi)的出險情況,得到下表:

出險次數(shù)

0

1

2

3

≥4

頻數(shù)

280

80

24

12

4

該保險公司這種保險的賠付規(guī)定如下:

出險序次

1

2

3

4

5次及以上

賠付金額(元)

將所抽樣本的頻率視為概率.

1)求本年度續(xù)保人保費的平均值的估計值;

2)按保險合同規(guī)定,若續(xù)保人在本年度內(nèi)出險次,則可獲得賠付元;依此類推,求本年度續(xù)保人所獲賠付金額的平均值的估計值;

3)續(xù)保人原定約了保險公司的銷售人員在上午之間上門簽合同,因為續(xù)保人臨時有事,外出的時間在上午之間,請問續(xù)保人在離開前見到銷售人員的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C)的上頂點為,離心率為.

1)求橢圓C的方程;

2)若過點A作圓(圓在橢圓C內(nèi))的兩條切線分別與橢圓C相交于B,D兩點(B,D不同于點A),當r變化時,試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】低碳經(jīng)濟時代,文化和旅游兩大產(chǎn)業(yè)逐漸成為我國優(yōu)先發(fā)展的“綠色朝陽產(chǎn)業(yè)”.為了解某市的旅游業(yè)發(fā)展情況,某研究機構(gòu)對該市2019年游客的消費情況進行隨機調(diào)查,得到頻數(shù)分布表及頻率分布直方圖.

旅游消費(千元)

頻數(shù)(人)

10

60

1)由圖表中數(shù)據(jù),求的值及游客人均消費估計值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值為代表)

2)該機構(gòu)利用最小二乘法得到20132017年該市的年旅游人次(千萬人次)與年份代碼的線性回歸模型:.

注:年份代碼15分別對應年份20132017

①試求20132017年的年旅游人次的平均值;

②據(jù)統(tǒng)計,2018年該市的年旅游人次為9千萬人次.建立20132018年該市年旅游人次(千萬人次)與年份代碼的線性回歸方程,并估計2019年該市的年旅游收入.

注:年旅游收入=年旅游人次×人均消費

參考數(shù)據(jù):.參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某土特產(chǎn)超市為預估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)(元)的分布列并求其數(shù)學期望.

附:參考公式和數(shù)據(jù):.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班A、B兩名學生六次數(shù)學測驗成績(百分制)如圖所示:

A同學成績的中位數(shù)大于B同學成績的中位數(shù);

A同學的平均分比B同學高;

A同學的平均分比B同學低;

A同學成績方差小于B同學的方差,

以上說法中正確的是(

A.③④B.①②④C.②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項是D.數(shù)列的最大項是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為,(t為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標中,曲線的極坐標方程為.

1)將的方程化為極坐標方程;

2)若曲線的公共點都在上,,求r.

查看答案和解析>>

同步練習冊答案