【題目】某班A、B兩名學(xué)生六次數(shù)學(xué)測驗(yàn)成績(百分制)如圖所示:
①A同學(xué)成績的中位數(shù)大于B同學(xué)成績的中位數(shù);
②A同學(xué)的平均分比B同學(xué)高;
③A同學(xué)的平均分比B同學(xué)低;
④A同學(xué)成績方差小于B同學(xué)的方差,
以上說法中正確的是( )
A.③④B.①②④C.②④D.①③④
【答案】A
【解析】
分別求出A、B兩名學(xué)生的中位數(shù)、平均數(shù)、方差,對①②③④各說法進(jìn)行判斷可得答案.
解:根據(jù)莖葉圖可得:
①A同學(xué)成績的中位數(shù)為:,B同學(xué)成績的中位數(shù)為:,
故A同學(xué)成績的中位數(shù)小于B同學(xué)成績的中位數(shù),①不正確;
②③A同學(xué)的平均分為:,
B同學(xué)的平均分為:,
故A同學(xué)的平均分比B同學(xué)低,故②不正確,③正確;
④A同學(xué)成績數(shù)據(jù)比較集中,方差小,B同學(xué)成績數(shù)據(jù)比較分散,方差大,故④正確;
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( )
A. 回答該問卷的總?cè)藬?shù)不可能是100個
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,右焦點(diǎn)F到右準(zhǔn)線的距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過F的直線l與橢圓C相交于P,Q兩點(diǎn).已知l被圓O:x2+y2=a2截得的弦長為,求△OPQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程,并說明它是何種曲線;
(2)設(shè)點(diǎn)的坐標(biāo)為,直線交曲線于、兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD, 為線段的中點(diǎn), 在線段上.
(I)當(dāng)是線段的中點(diǎn)時,求證:PB // 平面ACM;
(II)求證: ;
(III)是否存在點(diǎn),使二面角的大小為60°,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓A:(x+2)2+y2=32,過B(2,0)且與圓A相切的動圓圓心為P.
(1)求點(diǎn)P的軌跡E的方程;
(2)設(shè)過點(diǎn)A的直線l1交曲線E于Q、S兩點(diǎn),過點(diǎn)B的直線l2交曲線E于R、T兩點(diǎn),且l1⊥l2,垂足為W(Q、S、R、T為不同的四個點(diǎn)),求四邊形QRST的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為上任意一點(diǎn),,的垂直平分線交于點(diǎn),記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)已知點(diǎn),過的直線交于兩點(diǎn),證明:直線的斜率與直線的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com