【題目】已知點,圓.

1)若直線過點且到圓心的距離為,求直線的方程;

2)設過點的直線與圓交于兩點(的斜率為負),當時,求以線段為直徑的圓的方程.

【答案】1)直線的方程為;(2.

【解析】

1)根據(jù)點到直線的距離公式解得;

2)先通過點到直線的距離及勾股定理可解得直線的斜率,設點,聯(lián)立直線與圓的方程,消元列出韋達定理,可得的中點坐標即圓心坐標,從而得到圓的方程;

解:(1)由題意知,圓的標準方程為圓心,半徑

①當直線的斜率存在時,設直線的方程為,即,

則圓心到直線的距離為,.

直線的方程為;

②當直線的斜率不存在時,直線的方程為,

此時圓心到直線的距離為2,符合題意.

綜上所述,直線的方程為;

2)依題意可設直線的方程為,即,

則圓心到直線的距離

,解得

,直線的方程為,

設點,聯(lián)立直線與圓的方程得

消去,

則線段的中點的橫坐標為,把代入直線中得

所以,線段的中點的坐標為

由題意知,所求圓的半徑為:,

以線段為直徑的圓的方程為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為,且橢圓四個頂點構成的菱形面積為

(1)求橢圓C的方程;

(2)若直線l :y=x+m與橢圓C交于M,N兩點,以MN為底邊作等腰三角形,頂點為P(3,-2),求m的值及△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且函數(shù)的圖象在點處的切線斜率為

(1)求的值,并求函數(shù)的最值;

(2)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的離心率是,一個頂點是

)求橢圓的方程;

)設,是橢圓上異于點的任意兩點,且.試問:直線是否恒過一定點?若是,求出該定點的坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中),.它的最小正周期為,,且的最大值為2

1)求的解析式;

2)寫出函數(shù)的單調遞減區(qū)間、對稱軸和對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為

(Ⅰ)求的解析式;

(Ⅱ)當,求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為

(1)請將上述列聯(lián)表補充完整;

(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;

(3)已知在被調查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側面底面,,分別為棱的中點

(1)求三棱柱的體積;

(2)在直線上是否存在一點,使得平面?若存在,求出的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知扇形的圓心角是α,半徑為R,弧長為l.

(1)若α=75°,R=12 cm,求扇形的弧長l和面積;

(2)若扇形的周長為20 cm,當扇形的圓心角α為多少弧度時,這個扇形的面積最大?

查看答案和解析>>

同步練習冊答案