3.設x、y滿足不等式組$\left\{\begin{array}{l}{x-2y+1≤0}\\{2x+y-6≤0}\\{x-y+a≥0}\end{array}\right.$,其中a為常數(shù),當且僅當x=y=1時,目標函數(shù)z=x+2y取得最小值,則目標函數(shù)z的最大值為( 。
A.8B.$\frac{27}{5}$C.6D.3

分析 由題意可得y=x+a過點(1,1),求得a,作出其平面區(qū)域,進而找到目標函數(shù)z有最大值時的點C,解出點C代入即可.

解答 解:由題意可得y=x+a過點(1,1),
故a=0.
作出其平面區(qū)域如右圖:
則由圖象知,
平移直線x+2y=0,可得目標函數(shù)z=x+2y過點C時,有最大值.
由$\left\{\begin{array}{l}{x-y=0}\\{2x+y-6=0}\end{array}\right.$,易知C(2,2)
則目標函數(shù)z=x+2y的最大值為2+2×2=6.
故選:C.

點評 本題考查了線性規(guī)劃的應用,注意運用平移法,以及數(shù)形結(jié)合法,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=mlnx-x2+2(m≤8).
(1)當曲線y=f(x)在點(1,f(1))處的切線的斜率大于-2時,求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)-f′(x)≤4x-3對x∈[1,+∞)恒成立,求m的取值范圍.(提示:ln2≈0.7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=|lnx|,$g(x)=\left\{\begin{array}{l}0\\|{{x^2}-4}|-2\end{array}\right.$$\begin{array}{l}({0<x≤1})\\({x>1})\end{array}$則方程|f(x)+g(x)|=1實根的個數(shù)為( 。
A.2個B.4個C.6個D.8個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.cos135°的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù) f(x)=x+$\frac{2b}{x}$+a,x∈[a,+∞),其中a>0,b∈R,記m(a,b)為 f(x)的最小值,則當m(a,b)=2時,b的取值范圍為( 。
A.b>$\frac{1}{3}$B.b<$\frac{1}{3}$C.b>$\frac{1}{2}$D.b<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,已知c-b=1,bc=30,S=$\frac{15}{2}$,求∠A和a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設函數(shù)$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x+1
(1)求f(x)的最小正周期及其圖象的對稱中心;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中的內(nèi)角A,B,C所對的邊長分別為a,b,c,若$\sqrt{5}$b=4c,B=2C.
(1)求cosB;
(2)若c=5,點D為BC上一點,且BD=6,求△ADC的面積.

查看答案和解析>>

同步練習冊答案