設(shè)圓(x-2)2+(y-2)2=4的切線l與兩坐標(biāo)軸交于點(diǎn)A(a,0),B(0,b),ab≠0.
(1)證明:(a-4)(b-4)=8;
(2)若a>4,b>4,求△AOB的面積的最小值.
(1)證明:直線l的方程為
x
a
+
y
b
=1,即bx+ay-ab=0,
則圓心(2,2)到切線l的距離d=r,即
|2b+2a-ab|
b2+a2
=2,
整理得:ab-4(a+b)+8=0,
則(a-4)(b-4)=8;
(2)由(a-4)(b-4)=8,得到ab=4(a+b)-8,
又a>4,b>4,
∴S△AOB=
1
2
ab=2[(a-4)+(b-4)+6]≥2(2
(a-4)(b-4)
+6)=4(3+2
2
),(當(dāng)且僅當(dāng)a=b=4+2
2
時(shí)取等號(hào)),
則△AOB面積的最小值是12+8
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)點(diǎn)Q(-2,
21
)
作圓O:x2+y2=r2(r>0)的切線,切點(diǎn)為D,且QD=4.
(1)求r的值;
(2)設(shè)P是圓O上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線l,且l交x軸于點(diǎn)A,交y軸于點(diǎn)B,設(shè)
OK
=
OA
+
OB
,求|
OK
|
的最小值(O為坐標(biāo)原點(diǎn)).
(3)從圓O外一點(diǎn)M(x1,y1)向該圓引一條切線,切點(diǎn)為T,N(2,3),且有|MT|=|MN|,求|MT|的最小值,并求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓C1:x2+y2=4與直線l:3x+4y-5=0交于A,B兩點(diǎn),若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧
AB
上,則圓C2的最大面積為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)點(diǎn)P(0,-1)作圓C:x2+y2-2x-4y+4=0的切線
(1)求點(diǎn)P到切點(diǎn)A的距離|PA|;
(2)求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C的方程為x2+y2-8x+15=0,直線l的方程為y=kx-2.
(1)若直線l被圓C所截得弦長(zhǎng)為2,求直線l的方程;
(2)若直線l上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從點(diǎn)P(4,5)向圓(x-2)2+y2=4引切線,則圓的切線方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)P(x,y)是曲線C:
x=-2+cosθ
y=sinθ
為參數(shù),0≤θ<2π)上任意一點(diǎn),則
y
x
的取值范圍是( 。
A.[-
3
3
]
B.(-∞,-
3
]∪[
3
,+∞)
C.[-
3
3
,
3
3
]
D.(-∞,-
3
3
]∪[
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線l:y-1=k(x-1)和圓x2+y2-2y=0交點(diǎn)個(gè)數(shù)是( 。
A.0B.1
C.2D.個(gè)數(shù)與k的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+14=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,
2
為半徑的圓與圓C有公共點(diǎn),則k的最大值是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案