8.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-a≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=$\frac{y+1}{x+1}$的最小值為-$\frac{1}{4}$,則正數(shù)a的值為( 。
A.$\frac{7}{6}$B.1C.$\frac{3}{4}$D.$\frac{8}{9}$

分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=$\frac{y+1}{x+1}$表示過點(x,y)與(-1.-1)連線的斜率,只需求出可行域內(nèi)的點與(-1,-1)連線的斜率即可.作出最優(yōu)解,代入方程求解a即可.

解答 解:實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-a≥0}\\{2x-y-4≤0}\end{array}\right.$的可行域如圖:
∵z=$\frac{y+1}{x+1}$表示過點(x,y)與(-1.-1)連線的斜率,
易知a>0,所以可作出可行域,可知可行域的A與(-1,-1)連線的斜率最小,由$\left\{\begin{array}{l}{2x+y-a=0}\\{2x-y-4=0}\end{array}\right.$解得A(1+$\frac{a}{4}$,$\frac{a}{2}-2$)
z=$\frac{y+1}{x+1}$的最小值為-$\frac{1}{4}$,
即($\frac{y+1}{x+1}$)min=$\frac{\frac{a}{2}-2+1}{\frac{a}{4}+1+1}$=$\frac{2a-4}{a+8}$=$-\frac{1}{4}$⇒a=$\frac{8}{9}$.
故選:D.

點評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值.涉及到線性規(guī)劃的題目,每年必考;就此題而言,目標函數(shù)的幾何意義是解決本題的關(guān)鍵,一般來說,高考題中的分式結(jié)構(gòu)在處理方式上一般是分離變形,這樣其幾何意義就表現(xiàn)來了.是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=a+acosβ}\\{y=asinβ}\end{array}\right.$(a>0,β為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$.
(Ⅰ)若曲線C與l只有一個公共點,求a的值;
(Ⅱ)A,B為曲線C上的兩點,且∠AOB=$\frac{π}{3}$,求△OAB的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}的前n項和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足$\frac{{a}_{n}}{2}$=logabn(n∈N*),求數(shù)列{(an+6)•bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=log2(|x+1|+|x-1|-a)
(1)當a=3時,求函數(shù)f(x)的定義域;
(2)若不等式f(x)≥2的解集為R,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若復(fù)數(shù)z滿足z-1=$\frac{(i-1)^{2}+2}{1+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60,$|{\overrightarrow a}|=4,|{\overrightarrow b}|=1,則\overrightarrow b⊥(\overrightarrow a-x•\overrightarrow b)$時,實數(shù)x為( 。
A.4B.2C.lD.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在以A,B,C,D,E,F(xiàn)為頂點的多面體中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)請在圖中作出平面α,使得DE?α,且BF∥α,并說明理由;
(Ⅱ)求直線EF與平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別是a,b,c,$a=2\sqrt{2}$,${sinC}=\sqrt{2}sinA$.
(Ⅰ)求邊c的值;
(Ⅱ) 若$cosC=\frac{{\sqrt{2}}}{4}$,求△ABC的面積.

查看答案和解析>>

同步練習冊答案