3.若復(fù)數(shù)z滿足z-1=$\frac{(i-1)^{2}+2}{1+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:z-1=$\frac{(i-1)^{2}+2}{1+i}$=$\frac{-2i+2}{1+i}$=$\frac{2(1-i)^{2}}{(1+i)(1-i)}$=-2i,
∴z=1-2i,
則z在復(fù)平面內(nèi)對應(yīng)的點(1,-2)位于第四象限. 
故選:D.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.李冶(1192-1279),真定欒城(今屬河北石家莊市)人,金元時期的數(shù)學家、詩人、晚年在封龍山隱居講學,數(shù)學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( 。
A.10步、50步B.20步、60步C.30步、70步D.40步、80步

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在復(fù)平面中,復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$+i4對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知正項等差數(shù)列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比數(shù)列,則a10=(  )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知正項等比數(shù)列{an}的第四項,第五項,第六項分別為1,m,9,則雙曲線$C:\frac{y^2}{6}-\frac{x^2}{m}=1$的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-a≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=$\frac{y+1}{x+1}$的最小值為-$\frac{1}{4}$,則正數(shù)a的值為(  )
A.$\frac{7}{6}$B.1C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.四棱錐P-ABCD中,底面ABCD為矩形,$AB=2,BC=2\sqrt{2},E$為BC的中點,連接AE,BD,交點H,PH⊥平面ABCD,M為PD的中點.
(1)求證:平面MAE⊥平面PBD;
(2)設(shè)PE=1,求二面角M-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點P,若|PF|=5,則點F到雙曲線的漸近線的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又存在零點的是(  )
A.y=x2+1B.y=|lgx|C.y=cosxD.y=ex-1

查看答案和解析>>

同步練習冊答案