等差數(shù)列中,且成等比數(shù)列,求數(shù)列前20項(xiàng)的和.
解析試題分析:解:
設(shè)數(shù)列的公差為,則
,
,
. 3分
由成等比數(shù)列得,
即,
整理得,
解得或. 7分
當(dāng)時(shí),. 9分
當(dāng)時(shí),,
于是. 12分
考點(diǎn):數(shù)列的求和
點(diǎn)評(píng):將誒覺(jué)的關(guān)鍵是根據(jù)等比數(shù)列的通項(xiàng)公式的的求解,以及等差數(shù)列的公式得到基本量,然后求和,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)等差數(shù)列中,已知,試求n的值
(2)在等比數(shù)列中,,公比,前項(xiàng)和,求首項(xiàng) 和項(xiàng)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無(wú)關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
等差數(shù)列中,前項(xiàng)和為,且.
(Ⅰ)求通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列前項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列. 設(shè),數(shù)列滿(mǎn)足.
(Ⅰ)求證:數(shù)列成等差數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列中,,前10項(xiàng)的和
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2、4、8,…,,…項(xiàng),按原來(lái)的順序排成一個(gè)新的數(shù)列,試求新數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知等差數(shù)列{}的前n項(xiàng)和為Sn,且=
(1)求通項(xiàng);
(2)求數(shù)列{}的前n項(xiàng)和的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列為遞減的等差數(shù)列,是數(shù)列的前項(xiàng)和,且.
⑴ 求數(shù)列的前項(xiàng)和
⑵ 令,求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)
在等差數(shù)列中,,.
(1)求數(shù)列的通項(xiàng);
(2)令,證明:數(shù)列為等比數(shù)列;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com