精英家教網 > 高中數學 > 題目詳情
規(guī)定函數y=f(x)圖象上的點到坐標原點距離的最小值叫做函數y=f(x)的“中心距離”,給出以下四個命題:
①函數y=
1
x
的“中心距離”大于1;
②函數y=
-x2-4x+5
的“中心距離”大于1;
③若函數y=f(x)(x∈R)與y=g(x)(x∈R)的“中心距離”相等,則函數h(x)=f(x)-g(x)至少有一個零點.
以上命題是真命題的是( 。
A、①②B、②③C、①③D、①
分析:①②利用新定義,計算函數y=f(x)圖象上的點到坐標原點距離的最小值,即可判定,③取特例.
解答:解:①函數y=
1
x
圖象上的點到原點距離d=
x2+
1
x2
2
>1,即函數y=
1
x
的“中心距離”大于1,正確;
②函數y=
-x2-4x+5
圖象上的點到原點距離d=
x2+(-x2-4x+5)
=
5-4x
≥1,錯誤;
③取函數y=f(x)=x2+1,y=g(x)=-x2-1,函數h(x)=f(x)-g(x)=2x2+2,沒有零點,錯誤.
故選:D.
點評:本題考查新定義,考查距離的計算,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

規(guī)定maxf(x),g(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,若定義在R上的奇函數F(x)滿足:當x>0時,F(x)=max1-log2x,1+log2x.
(1)求F(x)的解析式,并寫出F(x)的單調區(qū)間;
(2)若方程F(x)=m有唯一實數解,求實數m的值;
(3)求t>0時,函數y=F(x)在x∈[t,2]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

對定義域分別是Df、Dg的函數y=f(x)、y=g(x),規(guī)定:函數h(x)=
f(x)•g(x)  當x∈Df且x∈Dg
f(x)          當x∈Df且x∉Dg
g(x)          當x∉Df且x∈Dg

(1)若函數f(x)=
1
x
,g(x)=x2+4,寫出函數h(x)的解析式;
(2)求問題(1)中函數h(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義域分別為M,N的函數y=f(x),y=g(x),規(guī)定:函數h(x)=
f(x)•g(x),當x∈M且x∈N
f(x),當x∈M且x∉N
g(x),當x∉M且x∈N

(1)若函數f(x)=
1
x+1
,g(x)=x2
+2x+2,x∈R,求函數h(x)的取值集合;
(2)若g(x)=f(x+α),其中α是常數,且α∈[0,2π],請問,是否存在一個定義域為R的函數y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

規(guī)定函數y=f(x)圖象上的點到坐標原點距離的最小值叫做函數y=f(x)的“中心距離”,給出以下四個命題:以下命題是真命題的是
 
(寫出所有其命題的序號)
①函數y=
1
x
的“中心距離”大于1;
②函數y=
5-4x-x2
的“中心距離”大于1;
③若函數y=f(x)(x∈R)與y=g(x)(x∈R)的“中心距離相等”,則函數L(x)=f(x)-g(x)至少有一個零點;
④f(x)是其定義域上的奇函數,是它的“中心距離”為0的充分不必要條件.

查看答案和解析>>

同步練習冊答案