3.設(shè)等差數(shù)列{an}的前n項和為Sn,若a5=3,S10=40,則nSn的最小值為-32.

分析 利用等差數(shù)列的通項公式與求和公式可得Sn,再利用數(shù)列的單調(diào)性即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a5=3,S10=40,
∴a1+4d=3,10a1+$\frac{10×9}{2}$d=40,
解得a1=-5,d=2.
∴Sn=-5n+$\frac{n(n-1)}{2}×2$=n2-6n.
則nSn=n2(n-6).
n≤5時,nSn<0.
n≥6時,nSn≥0.
可得:n=4時,nSn取得最小值-32.
故答案為:-32.

點評 本題考查了等差數(shù)列的通項公式與求和公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\vec a=(sinx,-1),\vec b=(\sqrt{3}cosx,-\frac{1}{2})$,函數(shù)$f(x)=({\vec a+\vec b})•\vec a-1$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,若$f(\frac{A}{2})=\frac{3}{2}$,a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)滿足xf′(x)-f(x)=xex且f(-1)=$\frac{1}{e}$,則x<0時f(x)=( 。
A.既有極大值又有極小值B.有極大值無極小值
C.既無極大值又無極小值D.有極小值無極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在一次實驗中,測得(x,y)的四組值分別是A(6,2),B(8,3),C(10,5),D(12,6),則y與x之間的回歸直線方程為( 。
A.$\hat y=2.3x-0.7$B.$\hat y=2.3x+0.7$C.$\hat y=0.7x-2.3$D.$\hat y=0.7x+2.3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系xOy中,已知圓心分別為A(14,92),B(17,76),C(19,84)的三個圓半徑相同,直線l過點B,且位于l同側(cè)的三個圓各部分的面積之和等于另一側(cè)三個圓各部分的面積之和,則直線l的斜率的取值集合為{-24}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|$\frac{2}{3}$x+1|.
(1)若不等式f(x)≥-|x|+a恒成立,求實數(shù)a的取值范圍;
(2)若對于實數(shù)x,y,有|x+y+1|≤$\frac{1}{3}$,|y-$\frac{1}{3}$|≤$\frac{2}{3}$,求證:f(x)≤$\frac{7}{9}$,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線y=3lnx+x+2在點p0處的切線與直線x+4y-8=0垂直,則點p0的坐標(biāo)是(  )
A.(0,1)B.(1,0)C.(1,-1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某三棱錐的三視圖如圖所示,已知該三棱錐的外接球的表面積為12π,則此三棱錐的體積為( 。
A.4B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某密碼鎖共設(shè)四個數(shù)位,每個數(shù)位的數(shù)字都可以是1,2,3,4中的任一個.現(xiàn)密碼破譯者得知:甲所設(shè)的四個數(shù)字有且僅有三個相同;乙所設(shè)的四個數(shù)字有兩個相同,另兩個也相同;丙所設(shè)的四個數(shù)字有且僅有兩個相同;丁所設(shè)的四個數(shù)字互不相同.則上述四人所設(shè)密碼最安全的是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案