已知lgM+lgN=2lg(M-2N),求log
2
M
N
的值.
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:由lgM+lgN=2lg(M-2N),可得MN=(M-2N)2,且M>2N>0.解得
M
N
即可得出.
解答: 解:∵lgM+lgN=2lg(M-2N),
∴MN=(M-2N)2,且M>2N>0.
解得
M
N
=4.
log
2
M
N
=log
2
4
=4.
點評:本題考查了對數(shù)運算法則、一元二次方程的解法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
ln(x2-2x+2)
x
-
1
4

(1)判斷函數(shù)f(x)在區(qū)間(0,2)上的單調(diào)性;
(2)若函數(shù)f(x)在(0,2)上有兩個零點x1,x2,求證:f(
x1+x2
2
)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正六邊形ABCDEF的中心在坐標原點,外接圓半徑為2,頂點AD在x軸上,求以A、D為焦點,且過點E的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)若a=1,求證:當x>0時,f(x)<0;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:(1+
1
2
)(1+
1
4
)…(1+
1
2n
)<e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)兩直線l1:x+y
1-cosθ
+b=0,l2:xsinθ+y
1+cosθ
-a=0,θ∈(π,
3
2
π),則直線l1和l2的位置關(guān)系是( 。
A、平行B、平行或重合
C、垂直D、相交但不一定垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意x∈[0,2],總存在t∈(0,2],使得ex(x2-3x+1)≤at2+2t成立,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={m|(m-11)(m-16)≤0,m∈N},若(x3-
1
x2
n(n∈M)的二項展開式中存在常數(shù)項,則n等于( 。
A、16B、15C、14D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在定義域內(nèi)是減函數(shù)的是( 。
A、f(x)=-
1
x
B、f(x)=
x
C、f(x)=2-x
D、f(x)=tanx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C上任意一點P到兩個定點F1(-
3
,0)和F2(
3
,0)的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)過(0,-2)的直線l與曲線C交于A、B兩點,且
OA
.
OB
=0(O為坐標原點),求直線l的方程.

查看答案和解析>>

同步練習冊答案