【題目】已知橢圓C:()的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線(xiàn)l與橢圓C交于、,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱(chēng)直線(xiàn)l具有性質(zhì)H.
(1)求橢圓C的方程;
(2)若直線(xiàn)l垂直于x軸,且具有性質(zhì)H,求直線(xiàn)l的方程;
(3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)P、Q、R,使得直線(xiàn)、、都具有性質(zhì)H.
【答案】(1)(2);(3)證明見(jiàn)解析;
【解析】
(1)根據(jù)正三角形中的長(zhǎng)度關(guān)系列出的關(guān)系求解即可.
(2) 設(shè)直線(xiàn),再求得滿(mǎn)足的關(guān)系式,進(jìn)而代入化簡(jiǎn)求解即可.
(3)假設(shè)存在橢圓C上不存在三個(gè)不同的點(diǎn)P、Q、R滿(mǎn)足條件,再將對(duì)應(yīng)的點(diǎn)坐標(biāo)代入橢圓方程,分情況討論得出矛盾即可.
(1),所以,
又右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形,所以,
因?yàn)?/span>,
解得:,,
所以,橢圓方程為:
(2)設(shè)直線(xiàn),則,
其中滿(mǎn)足:,,
設(shè),
∵(其中O為坐標(biāo)原點(diǎn)),
∴,
∵點(diǎn)在橢圓上,
∴,
∴,
∴,
∴直線(xiàn)的方程為或.
(3) 證明:假設(shè)在橢圓上存在三個(gè)不同的點(diǎn),
使得直線(xiàn)都具有性質(zhì),
∵直線(xiàn)具有性質(zhì),
∴在橢圓上存在點(diǎn)M,使得:,
設(shè),則,,
∵點(diǎn)在橢圓上,∴,
又∵,,代入化簡(jiǎn)得,①
同理:②, ,③
1)若中至少一個(gè)為0,不妨設(shè),則,
由①③得,即為長(zhǎng)軸的兩個(gè)端點(diǎn),則②不成立,矛盾。
2)若均不為0,則由①②③得,矛盾。
∵在橢圓C上不存在三個(gè)不同的點(diǎn)P、Q、R,使得直線(xiàn)、、都具有性質(zhì)H.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面,,.
(Ⅰ)求證:平面;
(Ⅱ)求直線(xiàn)與平面所成角的正弦值;
(Ⅲ)若二面角的余弦值為,求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1)求圓C的直角坐標(biāo)方程及直線(xiàn)的斜率;
(2)直線(xiàn)與圓C交于M,N兩點(diǎn),中點(diǎn)為Q,求Q點(diǎn)軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定數(shù)列,記該數(shù)列前項(xiàng)中的最大項(xiàng)為,即,該數(shù)列后項(xiàng)中的最小項(xiàng)為,記,;
(1)對(duì)于數(shù)列:3,4,7,1,求出相應(yīng)的,,;
(2)若是數(shù)列的前項(xiàng)和,且對(duì)任意,有,其中為實(shí)數(shù),且,.
(。┰O(shè),證明:數(shù)列是等比數(shù)列;
(ⅱ)若數(shù)列對(duì)應(yīng)的滿(mǎn)足對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問(wèn)題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于,兩點(diǎn),點(diǎn)為線(xiàn)段的中點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).當(dāng)直線(xiàn)的斜率為時(shí),直線(xiàn)的斜率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的右頂點(diǎn),過(guò)的動(dòng)直線(xiàn)交該橢圓于,兩點(diǎn),記的面積為,的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下列四個(gè)命題:①的值域是;②是奇函數(shù);③在上單調(diào)遞增;④方程總有四個(gè)不同的解;其中正確的是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為整數(shù),其前n項(xiàng)和為.規(guī)定:若數(shù)列滿(mǎn)足前r項(xiàng)依次成公差為1的等差數(shù)列,從第項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱(chēng)數(shù)列為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,求出,并證明:對(duì)任意,;
(3)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,當(dāng)時(shí),在與之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求,并探究在數(shù)列中是否存在三項(xiàng),,其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點(diǎn),當(dāng)∠F1MF2=90°時(shí),△F1MF2的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)A是橢圓C上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線(xiàn)AF1,AF2分別與橢圓交于點(diǎn)B,D,設(shè)直線(xiàn)BD的斜率為k1,直線(xiàn)OA的斜率為k2,求證:k1·k2等于定值.
【答案】(Ⅰ)(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)由題意可求得,則,橢圓的方程為.
(Ⅱ)設(shè),,
當(dāng)直線(xiàn)的斜率不存在或直線(xiàn)的斜率不存在時(shí),.
當(dāng)直線(xiàn)、的斜率存在時(shí),,設(shè)直線(xiàn)的方程為,聯(lián)立直線(xiàn)方程與橢圓方程,結(jié)合韋達(dá)定理計(jì)算可得直線(xiàn)的斜率為,直線(xiàn)的斜率為,則.綜上可得:直線(xiàn)與的斜率之積為定值.
(Ⅰ)設(shè)由題,
解得,則,橢圓的方程為.
(Ⅱ)設(shè),,當(dāng)直線(xiàn)的斜率不存在時(shí),
設(shè),則,直線(xiàn)的方程為代入,
可得 ,,則,
直線(xiàn)的斜率為,直線(xiàn)的斜率為,
,
當(dāng)直線(xiàn)的斜率不存在時(shí),同理可得.
當(dāng)直線(xiàn)、的斜率存在時(shí),設(shè)直線(xiàn)的方程為,
則由消去可得:,
又,則,代入上述方程可得:
,,
則 ,
設(shè)直線(xiàn)的方程為,同理可得 ,
直線(xiàn)的斜率為
直線(xiàn)的斜率為, .
所以,直線(xiàn)與的斜率之積為定值,即.
【點(diǎn)睛】
(1)解答直線(xiàn)與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線(xiàn)的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.
(2)涉及到直線(xiàn)方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線(xiàn)斜率為0或不存在等特殊情形.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)f(x)=(x+b)(-a),(b>0),在(-1,f(-1))處的切線(xiàn)方程為(e-1)x+ey+e-1=0.
(Ⅰ)求a,b;
(Ⅱ)若方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2,且x1<x2,證明:x2-x1≤1+.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com