【題目】關(guān)于函數(shù),有下列四個命題:①的值域是;②是奇函數(shù);③在上單調(diào)遞增;④方程總有四個不同的解;其中正確的是( )
A.①②B.②③C.②④D.③④
【答案】C
【解析】
①中通過令可求得的值,可知值域包括,①錯誤;
②根據(jù)奇函數(shù)的定義可判斷出②正確;
③中通過反例可確定在上不滿足單調(diào)遞增的定義,③錯誤;
④將方程變?yōu)?/span>,通過驗證兩個一元二次方程各有兩個不等實根,并且不是其中任何一個的根,即可確定方程共有四個不同解,④正確.
①中,令,解得:,可知值域含有元素,則①錯誤
②中,由解析式可知定義域為
又 是奇函數(shù),則②正確
③中,當時,;當時,
可知在上不滿足單調(diào)遞增的定義,則③錯誤
④由得:,即
整理可得:
與各有兩個不等實根
又 不是兩個方程的根
方程總有四個不同的解,則④正確
故選:
科目:高中數(shù)學 來源: 題型:
【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機抽取100名學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
(1)求的值;
(2)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】—只螞蟻在三邊長分別為,,的三角形內(nèi)自由爬行,某時刻該螞蟻距離三角形的任意一個頂點的距離不超過的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求證:恒成立;
(2)若關(guān)于的方程至少有兩個不相等的實數(shù)根,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)某種商品噸,此時所需生產(chǎn)費用為萬元,當出售這種商品時,每噸價格為萬元,這里(為常數(shù),).
(1)為了使這種商品的生產(chǎn)費用平均每噸最低,那么這種商品的產(chǎn)量應為多少噸?
(2)如果生產(chǎn)出來的商品能全部賣完,當產(chǎn)量是120噸時企業(yè)利潤最大,此時出售價格是每噸160萬元,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某港口水的深度是時間(,單位:)的函數(shù),記作.下面是某日水深的數(shù)據(jù):
經(jīng)長期觀察,的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時,船底離海底的距離為或以上時認為是安全的(船舶?繒r,船底只需不碰海底即可).某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內(nèi)安全進出港,請問,它最多能在港內(nèi)停留( )小時(忽略進出港所需的時間).
A.6 B.12
C.16 D.18
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)若G為C1C中點,求二面角C-AG-E的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com