11.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2(1+2sin2θ)=12,且曲線C的左焦點F在直線l上.
(I)求實數(shù)m和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點,求$\frac{1}{|AF|}$+$\frac{1}{|BF|}$的值.

分析 (I)曲線C:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1,左焦點為F(-2$\sqrt{2}$,0),代入直線l得m;
(Ⅱ)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-2\sqrt{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入橢圓方程得t2-2t-2=0,即可求$\frac{1}{|AF|}$+$\frac{1}{|BF|}$的值.

解答 解:(I) 因為曲線C:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1,左焦點為F(-2$\sqrt{2}$,0),代入直線l得m=-2$\sqrt{2}$;
(Ⅱ)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-2\sqrt{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入橢圓方程得t2-2t-2=0,
則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{4+8}}{2}$=$\sqrt{3}$.

點評 本題考查參數(shù)方程與直角坐標(biāo)方程的互化,考查參數(shù)幾何意義的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1..已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求f(x)的最大值及相應(yīng)的x的取值集合.
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2+ax+b,a≠b,則f(2)=4是f(a)=f(b)的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.不是充分條件,也不是必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.我國是世界上嚴(yán)重缺水的國家,城市缺水尤為突出,某市為了制定合理的節(jié)水方案,從該市隨機調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.
(1)求圖中a的值并估計樣本的眾數(shù);
(2)該市計劃對居民生活用水試行階梯水價,即每位居民月用水量不超過ω噸的按2元/噸收費,超過ω噸不超過2ω噸的部分按4元/噸收費,超過2ω噸的部分按照10元/噸收費.
①用樣本估計總體,為使75%以上居民在該月的用水價格不超過4元/噸,ω至少定為多少?
②假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當(dāng)ω=2時,估計該市居民該月的人均水費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)若函數(shù)f(x)在(2,+∞)上為單調(diào)遞增函數(shù),求實數(shù)a的范圍;
(2)試討論f(x)在[2,e]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如果函數(shù)f(x)的定義域為[-1,3],那么函數(shù)f(2x+3)的定義域為( 。
A.[-2,0]B.[1,9]C.[-1,3]D.[-2,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點A(-2,3),B(3,2),過點P(0,-2)的直線L與線段AB有公共點,求直線L的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=1-2x,g[f(x)]=$\frac{1-{x}^{2}}{{x}^{2}}$(x≠0),則g(3)=( 。
A.1B.0C.15D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,⊙O和⊙O′相交于A、B兩點,過A作兩圓的切線分別交兩圓于C、D兩點,連接DB并延長交⊙O于點E.
(1)證明:AC•BD=AD•AB;
(2)若AD=4,AC=2AB,求DE.

查看答案和解析>>

同步練習(xí)冊答案