1.如圖所示,正方形BCDE的邊長為a,已知$AB=\sqrt{3}BC$,將△ABE沿BE邊折起,折起后A點在平面BCDE上的射影為D點,則翻折后的幾何體中有如下描述:
①AB與DE所成角的正切值為$\sqrt{2}$;
②AB∥CE;
③${V_{B-ACE}}=\frac{1}{12}{a^3}$;
④平面ABC⊥平面ADC.其中正確的命題序號為①④.

分析 在①中,由BC∥DE,知∠ABC(或其補角)為AB與DE所成角,由此能求出AB與DE所成角的正切值為$\sqrt{2}$;在②中,由翻折后的圖形知AB與CE是異面直線;在③中,VB-ACE=$\frac{1}{6}{a}^{3}$;在④中,由AD⊥平面BCDE,知AD⊥BC,又BC⊥CD,由此推導出平面ABC⊥平面ADC.

解答 解:∵正方形BCDE的邊長為a,已知$AB=\sqrt{3}BC$,將△ABE沿BE邊折起,
折起后A點在平面BCDE上的射影為D點,
∴$AB=\sqrt{3}BC$=$\sqrt{3}a$,AE=$\sqrt{2}a$,AD⊥平面BCDE,AD=a,AC=$\sqrt{2}a$,
在①中,∵BC∥DE,∴∠ABC(或其補角)為AB與DE所成角,
∵AB=$\sqrt{3}a$,BC=a,AC=$\sqrt{2}a$,∴BC⊥AC,
∴tan∠ABC=$\sqrt{2}$,∴AB與DE所成角的正切值為$\sqrt{2}$,故①正確;
在②中,由翻折后的圖形知AB與CE是異面直線,故②錯誤;
在③中,${V}_{B_ACE}=\frac{1}{3}{S}_{△BCE}×AD=\frac{1}{3}×\frac{1}{2}{a}^{3}$=$\frac{1}{6}{a}^{3}$,故③錯誤;
在④中,∵AD⊥平面BCDE,BC?平面ABC,
∴AD⊥BC,又BC⊥CD,AD∩CD=D,
∴BC?平面ADC,又BC?平面ABC,
∴平面ABC⊥平面ADC,故④正確.
故答案為:①④.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸交于點D,且有|FA|=|FD|,當點A的橫坐標為3時,△ADF為正三角形
(1)求C的方程
(2)延長AF交拋物線于點E,過點E作拋物線的切線l1,求證:l1∥l.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.雙曲線y2-2x2=8的漸近線方程為$y=±\sqrt{2}x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設f(x)是定義在R上的最小正周期為$\frac{7π}{6}$的函數(shù),且在$[-\frac{5π}{6},\frac{π}{3})$上$f(x)=\left\{\begin{array}{l}sinx,x∈[-\frac{5π}{6},0)\\ cosx+a,x∈[0,\frac{π}{3}]\end{array}\right.$,則a=-1,$f(-\frac{16π}{3})$=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x|-1<x<2},B={x|0<x<3},則A∪B等于(  )
A.(0,2)B.(2,3)C.(-1,3)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.2016年9 月4日至5日在中國杭州召開了G20峰會,會后某10國集團領導人站成前排3人后排7人準備請攝影師給他們拍照,現(xiàn)攝影師打算從后排7人中任意抽2人調(diào)整到前排,使每排各5人.若調(diào)整過程中另外8人的前后左右相對順序不變,則不同調(diào)整方法的總數(shù)是(  )
A.$C_7^2A_3^2$B.$C_7^2A_5^5$C.$C_7^2A_5^2$D.$C_7^2A_4^2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設p:實數(shù)x滿足x2+4ax+3a2<0,其中a≠0,命題q:實數(shù)x滿足{$\begin{array}{l}{x^2}-6x-72≤0\\{x^2}+x-6>0\end{array}$.
(1)若a=-1,且p∨q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.把雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的實軸變虛軸,虛軸變實軸,那么所得的雙曲線方程為( 。
A.-$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.-$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設a=($\frac{1}{3}$)${\;}^{\frac{4}{5}}$,b=($\frac{1}{4}$)${\;}^{\frac{4}{5}}$,c=($\frac{1}{3}$)${\;}^{\frac{3}{5}}$,則(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

同步練習冊答案