分析 設此弦的端點為A(x1,y1),B(x2,y2).可得$\frac{{x}_{1}^{2}}{2}+\frac{{y}_{1}^{2}}{4}$=1,$\frac{{x}_{2}^{2}}{2}+\frac{{y}_{2}^{2}}{4}$=1,相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{2}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{4}$=0.
利用中點坐標公式與斜率計算公式可得斜率,即可得出.
解答 解:設此弦的端點為A(x1,y1),B(x2,y2).
則$\frac{{x}_{1}^{2}}{2}+\frac{{y}_{1}^{2}}{4}$=1,$\frac{{x}_{2}^{2}}{2}+\frac{{y}_{2}^{2}}{4}$=1,相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{2}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{4}$=0.
∵x1+x2=2,y1+y2=2,∴${x_1}-{x_2}+\frac{{{y_1}-{y_2}}}{2}=0$,∴$k=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=-2$,
∴此弦所在的直線方程為y-1=-2(x-1),即2x+y-3=0.
故答案為:2x+y-3=0.
點評 本題考查了橢圓的標準方程及其性質(zhì)、中點坐標公式與斜率計算公式、“點差法”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 4 | C. | 8(log23-1) | D. | $-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -9<m<25 | B. | 8<m<25 | C. | 16<m<25 | D. | m>8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com