分析 (1)由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù)的增區(qū)間.
(3)利用正弦函數(shù)的最值,求得f(x)的最小值以及取得最小值時(shí)的x集合.
解答 解:(1)根據(jù)函數(shù)$f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象,
可得A=2,$\frac{3}{4}•\frac{2π}{ω}$=$\frac{2π}{3}$+$\frac{π}{12}$,求得ω=2,∴f(x)=2sin(2x+φ).
再根據(jù)五點(diǎn)法作圖可得2•$\frac{2π}{3}$+φ=$\frac{3π}{2}$,∴φ=$\frac{π}{6}$,∴f(x)=2sin(2x+$\frac{π}{6}$).
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(3)令2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$,求得x=kπ+-$\frac{π}{3}$,可得當(dāng)x=kπ+-$\frac{π}{3}$,k∈Z 時(shí),函數(shù)取得最小值為-2.
即f(x)的最小值為-2,取得最小值時(shí)的x集合為{x|x=kπ+-$\frac{π}{3}$,k∈Z }.
點(diǎn)評(píng) 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值;還考查了正弦函數(shù)的單調(diào)性和最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 21 | C. | 22 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,4) | B. | (-1,2) | C. | (2,4) | D. | (-1,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com